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1
INTRODUCTION

Macromolecules play a central role in chemical technology and indeed in
biology. Their role and the richness of their properties mean that a whole
series of monographs would be required to constitute a comprehensive
treatise. This book concentrates on one aspect, the dynamics of polymers
in the liquid state. That is, the dynamics of polymer solutions and melts,
where in the last decade it has become possible to offer theories which
explain the salient features of these systems.

Among various dynamical properties of polymeric liquids, an impor-
tant and conspicuous property is their mechanics. As one knows in
everyday life, polymeric liquids (chewing gum, dough, or egg white, for
example) show quite distinct flow behaviours from the usual liquids like
water: a polymeric liquid is usually quite viscous and has visible elasticity.
For example if one stretches chewing gum and releases it quickly, then it
will shrink like rubber, yet chewing gum is a liquid and can fill a
container of any shape. This property, called the viscoelasticity, is just
one of the many distinctive properties of polymeric liquids. The purpose
of this book is to understand such properties from the molecular point of
view.

Given the complexity of the polymer molecules, the theories are
astonishingly simple, and before embarking on the main text it is worth
explaining why it is reasonable to attack the problem of interacting
macromolecules with a confidence which would not be justified for say
liquid benzene, let alone water.

Polymer molecules are formed when the condition required to add one
chemical unit (monomeric unit) to a system is almost independent of its
size. If one has a small hydrocarbon, the synthesis of the next homologue
can be a distinct process from the one after that, i.e., to go from (A) to
(A) — (A) involves a rather different pathway than going from (A) — (A)
to (A) — (A) — (A). But if one starts with (4) — (4) — - - *(4), (4., say),
the energy required for A,— A,,, is almost identical to that of
A,+1= A,,, so that the process continues (polymerization reaction) and
In principle can go to indefinitely long chains. Mixtures of species will
often polymerize together:

(A4) = (A) = (B) - (A) - (4)—(B)-(B)-(B)
and special agents can branch polymers

) () <A~ @~ (@)
B=W-O=4) - 4)- )
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Fig. 1.1. (a) Flexible polymcr, (b) rodiike polymer, (c), (d) their concentrated
solutions.

An enormous number of variants are possible, are formed, and can
indeed be designed.

There are two simple cases and these are the two studied in this book:
(a) highly flexible polymers, where, on a sufficiently large scale, the
polymer appears as a random walk, or a spaghetti-like shape (Fig. 1.1a),
and (b) a rigid rod (Fig. 1.1b). These are, of course, extreme cases and
cases intermediate to (a) and (b) can be found.

Now consider a closely packed assembly of these molecules (see Fig.
1.1¢ and d). At a sufficiently high temperature, they are in a high state of
thermal agitation and form a viscoelastic liquid. (The reader will have a
good intuitive feeling for the macroscopic behaviour of a rubbery liquid
or a syrup.) Obviously the systems are quite complicated, but there are
reasons why we can say that such systems are easier to understand than
normal liquids.

One reason is the multiplicity of the interactions: one polymer is
simultaneously interacting with many others, perhaps hundreds. Each
one of these interactions has only a small effect so that a sound starting
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point is to add up their effects independently. This is in contrast with a
normal liquid where each molecule has only a few, say eight or ten,
neighbours and it is quite invalid to believe that these neighbours can
move independently of one another. For polymeric liquids, any polymer
molecule experiences an average of its swrrounding and the problem
reduces to deducing the mean properties from the behaviour of individual
molecules.

This task is made (comparatively) easy because of the essential feature
of polymers, i.e., the molecule itself is very large and the macroscopic
behaviour is dominated by this large scale property of the molecule. Let
us give a simple example of this.

Suppose a single molecule sits in solution and contributes to the
viscosity of a surrounding fluid. Let us compare two polymers of the same
size and conformation, but one is composed of spherical segments and
the other is composed of triangular segments (see Fig. 1.2a and b). If the
segments are separated from each other as in Fig. 1.2¢ and d, the shape
of the segments matters; the viscosities of (¢) and (d) are different.
However, if the segments are connected to form a large polymer, the

O
O O A 5
O O O >
o O AN
© A
o o © a VvV
©) (d)

Fig. 1.2. Polymers composed of (a) spherical segments and (b) triangular
segments with (c) and (d) their segments separated.
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difference between (a) and (b) is not important. Indeed it will be shown
later that the macroscopic viscosity is mainly determined by the average
size of the polymer coil, and is quite insensitive to the shape of the
segmental size (the difference in the viscosity of (a¢) and (b) is of the
order of N™'7, where N is the number of segments in the polymer).

The above example demonstrates the universality in the properties of
polymeric liquids. The macroscopic properties depend only on a few
parameters specifying the molecular characteristics, and in so far as these
parameters are the same, different systems behave in the same way. An
important feature of this is that if experimental data are plotted in a way
which eliminates the dependence of the parameters, various systems
behave in the same way. Indeed such reduced plots have been found for
various physical properties of polymer solutions and melts. An example is
shown in Fig. 1.3, where the viscosity of polymer solutions is plotted
against the shear rate for various concentrations. First note that the
viscosity is not constant, but depends on the shear rate. This is typical in
polymeric liquids, where the linear relation between stress and shear rate
is valid only under rather limited circumstances. Now, though the
nonlinearity is a source of complexity, one can see a simple structure in
Fig. 1.3: the shape of the curves are alike, so they can be superimposed
into a single curve if the viscosity and the shear rate are normalized for
each concentration. This is indeed possible, as shown in Fig. 1.4. Various
types of such reduced plots have been found. Those plots can superim-
pose experimental data for different molecular weights, concentration,

105

0.55 ©06900098%950040,
oo
©s
%
0.50 ¢000%00%002 0008 °e
S0eq,

— °
10~ IR
0.45 20000008000500g5,, °
°°° e
z
§ 0.40 o,egoOoooooOOoo°°°°°°° °o°
o
> 10 “eo

0.35 000000000000000008004, °
LY °°
°0
p=0,30 g'n/ml 00000000000 000000900000 oo
%0
o

o

10? 1 | | | ]
107 107" 10° 10' 10° 10°

x Shear rate (sec)™

Fig. 1.3. Logarithmic plot of non-Newtonian viscosity against shear rate for

solutions of polystyrene, M, =4.11x10° in n-butyl benzene with various

concentrations as shown. Reproduced from Graessley, Hazleton and Lindeman,
Trans. Soc. Rheol. 11, 267 (1967).
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1.0 0000000000000 BT

ninoe

1 A 1 l Al 1 L ] i 1 1 l L i i l
0.01 0.1 1.0 10.0 100.0

KT,

Fig. 1.4. Reduced plot of the non-Newtonian viscosity shown in Fig. 1.3, where

no is the viscosity at zero shear rate, and the time constant 7, is chosen

empirically for each solution. Reproduced from W. W. Graessley Adv. Polym.
Sci. 16, 1 (1974).

temperature, and chemical species. The ability of such superimposition
indicates the existence of an inherent simplicity hidden behind the
apparent complexity of the polymer systems. It is this feature that we
would like to discuss in this book.

Now, in concentrated solutions such as shown in Fig. 1.1¢ and d, the
key concept which allows us to express the relationship of the behaviour
of a single molecule to the average behaviour of its neighbours is that of a
surrounding tube. This is clearly specified for rodlike polymers. In order
to draw a picture and without loss of generality, let us consider the
freedom of a rod to move in a plane containing itself. Other molecules
are represented in this picture by dots. Then in a high density of rods, the
Picture is as shown in Fig. 1.5.

Suppose other rods are fixed for the moment. The rod is free to move
along itself, but rotations and displacement perpendicular to its length
Permit it to move only in the shaded region; i.e., our rod is confined to a
tube as far as rotations and lateral motions are concerned. Of course the
tube is made of other rods which are diffusing, but for a high enough
density this is not consequential. Thus what we must understand is how a
fod moves in a fixed, or a very slowly diffusing tube made of its
heighbours.

In the case of rodlike polymers it is easy to calculate the size of the
tube, but it is not so easy for flexible polymers where the picture of Fig.
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Fig. 1.5. Tube for a rod.

1.2 has to be replaced by something like Fig. 1.6. It is clear that in this
case the polymer can go for extensive ‘excursions’ (Fig. 1.7) so that the
tube is a fuzzy concept. It is also difficult to calculate the effective radius
and the step length of the tube. However, by just calling it @, and
assuming that & is a certain function of concentration, one can predict
various dynamical properties in the molten state.

At this stage, however, the reader has to be warned that the ‘fine
structure’ of the behaviour of real polymers is by no means resolved. The
contents of this book will produce answers to many questions, and these
answers will have qualitatively the right forms. But they may not be
correct in detail. For example, the viscosity of a monodisperse melt of
flexible polymers is shown to be proportional to M> whereas experimen-
tally it is known to be M>*, Possible explanations of the discrepancy are
discussed, but the problem is not entirely resolved. Thus the authors
believe they are surveying real progress, but by no means the whole

%
" .
Do
¥/ /l///////////
o Y
//'/4;/////{%4,2‘ . A
. : //I' ¢

Fig. 1.6. Tube for a flexible polymer.
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Fig. 1.7. Excursion of a flexible polymer.

story, and have tried in this book to make it clear where approximations
are being made and to give a reasoned assessment of their validity.

This book is oriented to one aspect of polymer theory, but in order to
reach it the authors have felt it necessary to give brief accounts of the
basis of the subject in discussions of single chains and of polymer
solutions. These topics too have made major advances in the last twenty
years and deserve books of their own, but can only be given a minimal
treatment in this book.



2
STATIC PROPERTIES OF POLYMERS

2.1 The random flight model

Flexible polymers can take up an enormous number of configurations by
the rotation of chemical bonds. The shape of the polymers can therefore
only be usefully described statistically. In this chapter we shall study the
statistical properties of a single polymer in the equilibrium state.

2.1.1 The freely jointed model

To study the statistical properties of flexible polymers, let us start from a
very simple model: a chain consisting of N links, each of length b, and
able to point in any direction independently of each other (see Fig. 2.1).
Such a model is called the freely jointed chain.

The conformation of the freely jointed chain is represented by the set
of (N + 1) position vectors {R,} =(R,. ..Ry) of the joints, or alterna-
tively by the set of bond vectors {r,} =(r,. . .ry), where

r.=R,-R,.,, n=1,2...,N. 2.1)

Since the bond vectors r, are independent of each other, the distribution
function for the polymer conformation is written as

w((n ) =11 v(r) 22)

where y(r) denotes the random distribution of a vector of constant
length by:

1
Y(r) = 7252 8(1r| = bo). 2.3)
This distribution is normalized to
Idnp(r) =1. (2.4)

To characterize the size of a polymer, we consider the end-to-end
vector R of the chain,

N
R=Ry~Ry= D, r,. (2.5)

n=1

Since (r,) =0, (R) is zero, but (R?) has a finite value, which can be
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Fig. 2.1. Freely jointed chain.

used as a characteristic length of the chain. Let R be defined by
R=(R?*)'"?= ((Ry—Ro)*)"”. (2.6)
From eqn (2.5) (R?) is given by

BY= 3 (ror)=3 (2423 (n-n)=N63  @.7)

nm=] n=1 n>m
because for n#m, {r, +r,) = (r,)+(r,) =0. Thus R is given by
R =VN b, (2.8)

2.1.2 General random flight models

Though the freely jointed chain is a very simple model, the result
(R*) x N holds for more general models. Consider for example the
model shown in Fig. 2.2, called the freely rotating chain, in which the
n-th bond is connected to the (n — 1)-th bond with a fixed angle 6 and
Can rotate freely around the (n — 1)-th bond. i

For such a model, (r,-r,) does not vanish for n#m. However,
(r, 1) decreases rapidly as |n —m| increases, and the relationship
(R?) = N again holds for large N. To see this we calculate (r, - r,,). If the
average of r, is taken with the rest of the chain (i.e., 7., Fns1, - -« » Ty—1)
fixed (n > m being assumed), we obtain (see Fig. 2.2b)

<rn)r,..,r,..+1 ..... _1fixed — COS 0",,_1. (2 9)

Multiplying both sides of this equation by r,, and taking the average over
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]

)

() (b)

Fig. 2.2. (a) Freely rotating chain. (b) The average of r, with r,_, fixed gives
-y COS 6.

Foms Tma1s - - « » Tn—1, W€ have
(o < ) = €08 05,y * 1 ). (2.10)
This recursion equation, with the initial condition (rZ,) = b3, is solved by
(T * 1) = b(cos G)" ™ (2.11)

which decreases exponentially with |7 — m|. Thus for large N, (R?) is
given by

®)=3 3 nr)=3 3 (nn)

==§ i (Fy* Fpir ). (2.12)

n=1 k=-—w

From eqn (2.11)

=~ = 1+ (7]
> (r,,-r,,+k)=bﬁ(1+2kz oos"9)=b§1_cose. (2.13)
k=2 —00 =1 COs
Hence
14 cos @
(R?) = Nb? 1" cos 0 s 0’ (2.14)

which again shows (R?) « N.
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In general if the distribution function of r, is written in the following
form

ll,({rn}) = l_[ V’("m Bty Tna2s o v v rn+n‘.): (2° 15)
(R?) is written, for large N, as
(R?) = Nb>. (2.16)
The constant b is called the effective bond length. The ratio
C.=b?*/b} (2.17)

represents the stiffnesst of the polymer and can be calculated from the
local structure of the chains. The results are summarized in refs 1-3.

2.1.3 Distribution of the end-to-end vector

Next we consider the statistical distribution of the end-to-end vector of
the random flight model. Let ®(R, N) be the probability distribution
function that the end-to-end vector of the chain consisting of N links is R.
Given the conformational distribution for ¥({r,}), ®(R, N) is calculated
by

(R, N) = J' dr, f dr,. .. f dr,,a(n - g r,,)‘P({r,,}), (2.18)

which is rewritten using the identity

o(r) =

(2.1:)3 f dkel*, (2.19)

(2;)3Idkfdrlfdr2...fdrn

x exp(ik- (R -3 r,,))‘l’({r,,'}). (2.20)

n=1

as

®(R, N) =

For the freely jointed chain, eqns (2.2) and (2.20) give

1 N
R, N)= 7o [ ke ® [an...any [T exp(-ik - r)w(r)

n=1

1 : : N
= Gry fdke"‘"[fdr exp(—ik - r)tp(r)] . (2.21)
TIn the literature, the stiffness is often represented by the Kuhn statistical segment length
bx defined by
bK = (Rz) / Ruux
Where R,,,, is the maximum length of the end-to-end vector.
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The integral over r is evaluated by introducing polar coordinates (r, 8, ¢;
the reference axis of € being taken along the vector k), giving

Idr exp(—ik - r)y(r)

=12 Idrr2 qu) Ide sin 8 exp(—ikr cos 8) 6(r — b)

sin kb
kb
where k = |k| and b, is replaced by b (since b,=b for a freely jointed
chain). From eqns (2.21) and (2.22)

PR, N)=(2:1z)3 J d""’“(Si:: b)N' (2.23)

If N is large, ((sin kb)/kb)" becomes very small unless kb is small. For
kb << 1, ((sin kb)/kb)" can be approximated as

sinkb\M /K% Nk2b?
(i) =(-5) -e(-%). e

This approximation holds also for kb =1 since both sides of eqn (2.24)
are nearly zero in such a case. Thus ®(R, N) is calculated as

2
Jdke'“' exp( N’f:b ) :

(2.22)

(R, N) = (2.25)

(27)*

The integral over k is a standard Gaussian integral. (Some useful
Gaussian integrals are summarized in Appendix 2.1.) If kX, and R,
(e =x, y, z) denote the components of the vectors k and R, then usmg.

eqn (2.1.2) 1

®(R, N)=(2n)~* [] gl [ f dk, exp(ik R, Nkib’/6)]

1/2
- 11 (62)" (e
3R?
)
Thus the distribution function of the end-to-end vector is Gaussian.

The distribution (2.26) has the unrealistic feature that |R| can be larger
than the maximum extended length Nb of the chain. A more realistic

= (3127Nb%)* expl - (2.26)
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Fig. 2.3. A chain divided into N submolecules.

distribution function which does not have this feature is available in the
literature.”** In this book, however, such highly extended states of
polymers are not considered and eqn (2.26) is sufficient for our purpose.

Although the above derivation is for the freely jointed chain, the result
actually holds more generally. In general it can be shown that provided
the conformational distribution is described by eqn (2.15), the distribu-
tion of the end-to-end vector R of a long chain (N >>1) is given by egn
(2.26). This is a result of the central limit theorem in statistics.’

To prove this, suppose that the chain is divided into N submolecules,
each consisting of A links (see Fig. 2.3). Clearly

N=NJ/A. (2.27)
Let 7, be the end-to-end vector of the n-th submolecule. The end-to-end
vector of the chain is written as

R =

M=

.. (2.28)

1

n

Now if N is very large, both N and A can be taken large enough so that
N>>1, and A>>1. If A> 1, the vectors 7, become independent of each
other, and the distribution of {#,} can be written as

N
v({7) =1 9. (2:29)

n=1
From eqns (2.28) and (2.29), the distribution of R is derived without
knowing the ‘actual form of (7). Again using the identities (2.21) and
(2.29), we have

O(R, N) = (2;), f dke* R A (k)Y (2.30)
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where
Ak) = I dr exp(—ik - P)P(r). 2.31)

Since (r) depends only on |r|, the integral over the direction of r can be
carried out as

= n 2z
A(k) = J‘drr2 fd9 sin 6 Idd} exp(—ikr cos 8)y(r)

j drdsr? smkr W) = <sm kr>&’ 2.32)

where .
(. )e= f drdnr?G(r). . . . (2.33)

Since we are interested in the small &k region, we may evaluate A(k) by
expanding (sin kr)/kr with respect to k

AR)= (1-3P + ... ) 5= 1— 32(P) ;. (2.34)
For A>>1, {r*); is given by Ab%, whence
Ak) =1-320%2. (2.35)

Thus ®(R, N) is evaluated as

_; R _ 23 2\N
®(R, N) = (2“), Idke“‘ (1-3A6%3)

(2“)3 j dke* R exp(—31ANDK?)

3 \® IR?
- (2::).1%2) Xp ( _2/11%2)' (2.36)

Since AN = N, eqn (2.36) agrees with eqn (2.26).

2.2 The Gaussian chain

We have seen that, in the statistical distribution of the end-to-end vector,
the local structure of the chain appears only through the effective bond
length b. This is generally true: the local structure affects only the
effective bond length but does not otherwise appear in the problem.
Therefore, if we are interested in the global properties of polymers, we
can start from the simplest model available.



THE GAUSSIAN CHAIN 15

We consider a chain whose bond length has the Gaussian distribution

wo-[Z"e-E) e

so that
(r?) = b (2.38)

The conformational distribution function of such a chain is given by

) =11 [523] x| - oz]

n=1

= [Z:bz]3mz exp[ - él 3(R, ;blzan—l)z] . (2.39)

Such a chain is called the Gaussian chain. The Gaussian chain does not
describe correctly the local structure of the polymer, but does correctly
describe the property on large length-scale. The advantage of the
Gaussian chain as a model is that it is mathematically much easier to
handle than any other of the models considered in Section 2.1.

The Gaussian chain is often represented by a mechanical model (see
Fig. 2.4): (N + 1) ‘beads’ are considered to be connected by a harmonic
spring whose potential energy is given by

N
UA(R) = 5p3kaT 3 (Ra=RocsY: (2.40)
At equilibrium, the Boltzmann distribution for such a model is exactly
the same as eqn (2.39).

An important property ‘of the Gaussian chain is that the distribution of
the vector R, — R,, between any two units » and m is Gaussian, being
given by

3 2 3(Rn _Rm)z]
2xb* |n -ml] exp[ " 2ln-m|b* 1" (2.41)

Ry

®R,—-R,., n —m)=[

R

Fig. 2.4. Gaussian chain.
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This follows from the properties of the Gaussian integral (see Appendix
2.1). Especially for any » and m

{(R,—R,,)*) =|n—m|db> (2.42)
The suffix #» of the Gaussian chain is often regarded as a continuous

variable. In such cases R, — R, _; is replaced by dR,,/3n and eqn (2.39) is
written as

N

3 OR,\?

Y[R,] = const exp[— — f dn( ") ] , (2.43)
2b A on

This distribution is known as the Wiener distribution.

Mathematically, there is some subtlety in going from discrete n to
continuous z, but for the present purpose it is sufficient to understand
that egn (2.43) is a formal rewriting of eqn (2.39). In this book, we use
the discrete » and continuous n interchangeably. The transformation
rules from the discrete variables to continuous variables are summarized
in Table 2.1.

Table 2.1
Discrete Continuous
k' k.
> - I dn
n=k k
R,—R,_, - oR,/on
R,.,+R,_,-2R, — R, /9n*
S, - é(n~m)
Kronecker delta Dirac delta function
d o)
- t
R, oR,
III dR, — IGR,.#

t,¥ These symbols refer to the functional derivative and the
functional integral respectively. In the usual notation these
are written as 8/0R(n) and [ 8R(n) in order to stress that
R is a function of the continuous variable n. However, as
the discrete representation and continuous representation
are used here interchangeably, we use the same symbol R,
in both representations.
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2.3 Chain conformation under an external field

2.3.1 The Green function

If there is an external field U,(r) acting on each segment, the equilibrium
distribution of the Gaussian chain is modified by the Boltzmann factor

exp[ - k,%T TdnU,(R,,)] , (2.44)

and the conformational distribution function becomes

1p[R,,]ocexp[ f dn( an) o7 f dnUe(R,,)] (2.45)

To discuss the statistical properties of such a system it is convenient to
consider the ‘Green function’ defined by,%’

Ry=R

| o] - 3 [ (2 - 2 [
J'dR jan °"p[ 2b21"”( )]

where Ry =R and R,=R’ in the functional integral means that the
integral is taken for all the conformations which start from R’ and end at
R. (Notice that the denominator of eqn (2.46) is independent of R and
R')
For U, =0, G(R, R'; N) reduces to the Gaussian distribution function
2::1\(1;2)‘3"2 ( 3(R —R')z)
3 eXp\ ~— oz )

In the general case of U,+0, G(R, R';N) represents the statistical
Weight (or the partition function) of the chain which starts from R’ and
ends at R in N steps. The partition function for all possible conformations
I8 given by

GR,R';N)=

G(R - R'; N) =( (2.47)

Z= [dR dR'G(R, R’; N). (2.48)
From the definition of G(R, R’; N), the following identity holds:

G(R, R';N) = I dR"G(R, R”; N —n)G(R", R';n), (for 0<n <N).
(2.49)
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(RN)

(R 0)

Fig. 2.5. A chain which starts at R’, passes through R" in n steps, and ends at R
in N steps.

The physical significance of this equation is clear. The factor G(R, R";
N —n)G(R", R'; n) represents the statistical weight of the chain which
starts at R’, passes through R" in n steps, and ends at R in N steps (see
Fig. 2.5). The integration of this statistical weight over all R” gives the
statistical weight of the chain which starts at R’ and ends at R.

Given G(R, R'; N), the average of an arbitrary physical quantity A is
easily calculated. If A depends only on the position of the n-th segment,
then

f dRy dR, dR,G(Ry, R,; N — n)G(R,, Ry: n)A(R,)

(A(R,)) =
I dR, dRoG (R, Ro; N)

(2.50)
Likewise, if A depends on R, and R,, (n > m being assumed), then
(A(R,, R,)) =

deN dR, dR,, dR,G(Rx, R,; N—n)G(R,, R,,; n —m)
-1
X G(Rm, Ro; m)A(R,,, Rm) X [deN dRoG(RN, RO; N)] (2.51)

Though the Green function G(R, R'; N) has a physical meaning only

for N >0, it is convenient to define G(R, R’; N) for N <0 in such a way
that

G(R,R’;N)=0 for N<O. (2.52)
With this definition, G(R, R'; N) satisfies a simple differential equation
3 b* & 1
S — ’e = — ! 6 N . 2.5
(azv . 8R2+k8TU,(R))G(R,R :N)=8(R - R") 5(N). (2.53)
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The derivation is given in Appendix 2.II. The product of the delta
functions 6(R — R') 6(N) on the right-hand side takes into account the
boundary conditions

G(R,R',N)=0 for N<0 and G(R,R’,N=0)=5(R—-R").
(2.54)

2.3.2 Example—chain confined in a box

As an example of the application of the Green function, let us consider a
polymer confined in a box of volume V=L_L L, (Fig. 2.6).® The
confinement is expressed by an external potential U, which is infinite
outside the box and zero inside the box. Alternatively the effect is
expressed by the boundary condition

G(R, R';N)=0 if R is on the boundary of the box. (2.55)
The solution of the equation

3 b 3F Ay _ e
(ﬁ_EW)G(R,R,N)_(s(R R') 5(N) (2.56)

under the boundary condition (2.55) is obtained by the standard
method:®

G(R,R'; N)=g.(R,, R;; N)g,(R,, R); N)g.(R., R;;N), (2.57)

with
¢.(R,RiN)==S sin(p ”R‘)sin(p “R‘)exp(—pznszzxéLz). (2.58)
Lx p=1 Lx Lx
_ L, -

v

|

@

Fig. 2.6. A polymer confined in a box, (@) VNbKL,, L,, L, and (b)
VNb>»L,, L, L..
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The partition function is then given by

Z= f dRAR'G(R,R';N)=2Z,2,7, (2.59)

with
L, Ly
z.~ [dr, [aRig.(R,, R N)

0 0

8 A |
=—L, 2 -zexp[w

T p=1,3,.. P

m°Nb* _p_z] .

o (2.60)

The free energy of the system is calculated by
A=—kzTInZ, (2.61)
so that the pressure acting on the wall normal to the x axis is
1 GA
L,L,3L,

Let us consider the two limiting cases:
(i) In the case when the polymer is much smaller than the box (i.e.,
VNb<KL, L, L,), Z, is approximated by

P,=— (2.62)

8 1
Zx=_Lx _=Lx 2.63
nz P=§’". pz ( )
whence
_ ksT _ ksT . _p _ksT
P.= LLL == and similarly P,=P,= v’ (2.64)

which is simply the equation of state of an ideal gas.
(ii)) In the case when the polymer is much larger than the box (i.e.,
VNb>»L,, L, L,), Z is dominated by the first term in the sum

8 T>Nb?
Z,—;t—zL,exp[— 6L ], (2.65)
which yields
1 o4 kBT( nszz) ANb? kT
b=t~ v "5 )~5z v @9

Therefore, in this case P, is not equal to P, and P, (unless L, =L, =L,),
i.e., the force acting on the wall is not isotropic. Later it will be shown
that this anisotropy in the pressure due to the anisotropic confinement is
responsible for a variety of mechanical properties peculiar to polymers.
The Green function method has been applied in various problems
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related to polymers in nonhomogeneous situations such as adsorption of
polymers, polymers near the phase boundary, polymers in a porous
media, etc. Many such examples can be found in the literature.®"

2.4 Scattering function

The size of a polymer can be measured by various scattering experiments
(light scattering, small angle X-ray scattering and neutron scattering).
The principles and the practical details of such scattering experiments are
given in refs 11-13.

Suppose that the polymer is modelled by a series of units at each R,
which have a scattering amplitude a,. Then the scattering intensity at the
scattering vector k=k; —k; (k; and k; being the wave vectors of the
incident and the scattered beam) is written as

No
2 a.anexplik - (R, — R,,)] (2.67)
n,m=1
where N, is the number of scattering units in the system and the sum is
taken over all the scattering units in the system. In particular, for a
homogeneous polymer one has
Ny

laf* 2 explik « (R, — R,,)]. (2.68)

n,m=1

This is proportional to N, since the sum Y2, explik - (R, —R,,)]
remains finite for N,— «. We shall use the structure factor g(k) defined
by
13
gk) = 3 (explik - (R, - R,)]) (2.69)

Which is independent of the system size (or N,).

If the polymer solution is sufficiently dilute, the interference among
different polymers can be neglected, so that eqn (2.69) is written as

1% :
g(k) = (explik - (R, - R,,)]) (2.70)
Where N is, as before, the number of segments constituting the polymer.
§lnce the direction of R, — R, is random, eqn (2.70) can be rewritten as
In eqn (2.32),

1 > <sin(|k| IR,,-Rm|)>‘ 2.71)

80)=§ 2 IR, - R,
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The characteristic size of the polymer is obtained from g(k) in the
small k region. Expanding eqn (2.71) for small &, we have

g0 =% 3 (1= R, R+ ...)

=NQ1-3R:+ . ..) (2.72)
where R, is defined by
5= o7 2.1 (R, —R,.)) 2.73)

which represents the mean square length between all the pairs of the
segments in the chain. The quantity R2 is called the mean square radius
of gyration since it can be rewritten as

2ot 2 (R, — RG)*) (2.74)

n-l

where R is the position of the centre of mass of the chain:

1 N
Rs=— D R,. (2.75)
Nn=]

The derivation of eqn ¢2.74) is straightforward: substitution of eqn (2.75)
into eqn (2.74) gives

2<R2 2R, * R; + R%)
—2<R2—2 SR+ 2R,,,-R.~>
- (VIR S R R)
1 2
=2—N2n,2m <(Rn —Rm) ) . (2'76)

In general, the size of the ?olymer is more appropriately represented
by R, than R (where R*> = (R?)) because R, is well defined for branched
polymers while R is not.

For a linear Gaussian polymer R, is easily calculated. From eqns (2.42)
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and (2.73)

= LS S n-mlb2==1, [dn [am b?
53,3 it =g [on fam -

N
o
Thus R, is given by R/V6 for the linear polymer.

Let us now calculate the structure factor for the Gaussian chain. Since

the distribution of R, — R,, is Gaussian, {exp[ik (R, — R.,)]) is calcu-
lated using eqn (2.1.20) in the Appendix as

dm(n — m)b*=iNb> (2.77)

%= |

ok——ﬁa

(explik - Ry = Ro)]) =(ex0] 3 ike(Rue = R)|)

a=x,y,z

=exp| -1 3 KR~ Ru))|. @78)

x=x,y,2

Since ((Re — R.0)?) =|m — n| b*/3, we get
bz 2
(explik - (R, ~Rn)) =exp| =l =ml|.  @79)

Hence the structure factor is given by

g(k) =%Tdn Tdm exp[— szkz ln —m |] =Nf(K*R2)  (2.80)
0 0

where
2 _
f(x)=;2(e ¥=1+x) (2.81)
Wwhich is called the Debye function. The asymptotic form of g(k) is

_[N(1-K’R3/3) for |k|R,«<1

s(l)= {ZNIkZR§ for |k|R,> 1. (2:82)

:Or convenience of calculation, the Debye function is often approximated
y
N

g(k)= 1+ R (2.83)

The error of this equation is less than 15% for the entire region of k.
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2.5 Excluded volume effect

2.5.1 Introduction

In the models of polymers considered in the previous sections, the
interaction among the polymer segments is limited to within a few
neighbours along the chain. In reality, however, segments distant along
the chain do interact if they come close to each other in space. An
obvious interaction is the steric effect: since the segment has finite
volume, other segments cannot come into its own region. This interaction
swells the polymer; the coil size of a chain with such an interaction is
larger than that of the ideal chain which has no such interaction. Even
when there are attractive forces, as long as the repulsive force dominates,
the polymer will swell. This effect is called the excluded volume effect.

The excluded volume effect represents the effect of the interaction
between segments which are far apart along the chain (see Fig. 2.7). Such
an interaction is often called the ‘long range interaction’ in contrast to the
‘short range interaction’ which represents the interaction among a few
neighbouring segments and is included in y(r, . . ., r4, ) in egqn (2.15).
(Note that the terms ‘long’ and ‘short’ represent the distance along the
chain, not the spatial separation.)

The excluded volume effect was first discussed by Kuhn,'* and the
modern development was initiated by Flory.’>’® It had been recognized
by these pioneers that the long range interaction changes the statistical
property of the chain entirely. For example, (R?) is no longer propor-
tional to N but to a higher power of N

(R?) «N?. (2.84)

The exponent v is about 3/5, so that the excluded volume effect is very .
important for long chains. 3

Once the long range interaction is introduced, exact calculation:
becomes impossible. A great deal of work has been done on this’

Fig. 2.7. Excluded volume interaction.
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problem, and a detailed description is given in various literature.*%7:17:18

Here we shall outline only a few typical approaches.

2.5.2 Model of the excluded volume chain

In real polymers, the nature of the long range interaction is quite
complicated: the interaction will include steric effects, van der Waals
attraction, and also may involve other specific interactions mediated by
solvent molecules. However, as far as the property of large length scale is
concerned, the detail of the interaction will not matter because the
excluded volume effect is controlled by the interaction between distant
parts of the chain. Thus the interaction between the polymer segments n
and m can be expressed by a short range function

ksT3(R, - R,,) (2.85)
which can usually be approximated even further to a delta function®
vksT 8(R, — R,,) (2.86)

where v is the excluded volume and has the dimension of volume.t
The total interaction energy is thus written as

N N
U, =3vksT f dn j dm 6(R, —R,). (2.87)
0 0
Using the local concentration of the segments
N
(=" 8(r—R,)= j dn d(r—R,), (2.88)
" 0

eqn (2.87) may be rewritten
U= f drivksTc(r)> (2.89)

This expression indicates that eqn (2.87) is the first term in the virial
expansion of the free energy with respect to the local concentration c(r).
Therefore the excluded volume parameter v can be regarded as the virial
coefficient between the segments.

In principle the virial expansion can be continued to include higher

t The reader may be worried by the use of the delta function which diverges when R, = R,,.
It turns out, however, that all physically measurable quantities involve integrals of this
potential and are well behaved. (The absolute entropy of the chain does diverge, but the
entropy difference, which matters experimentally, is well behaved also.) This situation is
familiar in quantum field theories and is discussed in great detail in the textbooks. The
reader can be assured that this point causes no real difficulties.
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order terms such as
U, = f dr[bukpTc(r)? + dwksTe(r) + . . .]. (2.90)

However, the higher order terms may be neglected since the segment
density inside the polymer coil is small: the segment density is estimated
as

¢ = %« N'=3%=N"% (when v=13/5) (2.91)
which becomes very small for large N. Therefore the essential features of
the excluded volume effect can be studied using the potential given by
eqn (2.87).

For a given combination of polymer and solvent, v varies with
temperature and can be zero at a certain temperature, called the © or
Flory temperature. At the © temperature, the chain becomes nearly
ideal.t

An appropriate expression for the temperature dependence of v may
be obtained as follows. Suppose that the interaction between the
segments is expressed by a potential energy u(r) which depends only on
their separation ». Then the second virial coefficient is evaluated by the
standard formula for an imperfect gas?

v= fdr[l - exp(—%)] . 2.92)

Usually u(r) consists of a hard core potential up,4(r) and a weak
attractive potential u,..(r) (see Fig. 2.8). In such a case, v is estimated as

v=fdr[1—exp(-—u%:(%)-)(l—£%f(;—))]=z4—g (2.93)

where A and B are constants independent of temperature. For this
model, the © temperature is defined as B/A, and eqn (2.93) may be
written as'® o
=01 -= .
v=v (1 T). (2.94)
Now if the interaction (eqn (2.87)) is taken into account, the
distribution function of R, becomes

W[R,] exp[— %Tdn(a;;")z iy Tdanm 5(R, —R,,.)] . @9

t Even at the © temperature the chain is not ideal since there is a three-body collision
term.2*?! However the effect of the three-body collision is quite weak and gives only a
logarithmic correction to {R?).



EXCLUDED VOLUME EFFECT 27

u(r)T Unarc”) & Upr) &

0 W 0 - 0 -
r r \/ r

(@ (b) (©

Fig. 2.8. A sketch of a potential. The potential can be decomposed into a hard
core potential u,,.(r) and a weak attractive potential u,.(7).

This model includes only two parameters; b, which represents the short
range interaction, and v, which represents the long range interaction.
The basic assumption of this two-parameter model is that there is a sharp
distinction between the short range interaction and the long range
interaction. Though the validity of this assumption can be questioned,? it
is generally believed to be a correct starting point for the analysis of the
excluded volume problem.

2.5.3 Theoretical approaches

We shall now discuss the statistical properties of the chain of egn
(2.95). We shall limit the discussion to the case of v >0, i.e., the case of
repulsive interation. The cases of v =0 and v <0 are discussed in refs 24
and 25.

A simple theory. The original idea of Flory'® for calculating the size of a
polymer is to consider the balance of two effects: a repulsive excluded
volume interaction which tends to swell the polymer, and the elastic
energy arising from the chain connectivity which tends to shrink the
polymer. This idea can be put into a particularly simple form of theory.?

Consider the free energy of a chain whose end-to-end vector is fixed at
R. This is given by

A(R)=—ksT In ®(R, N) + terms independent of R (2.96)
because the equilibrium distribution function is proportional to exp(—A/
kgT). If v =0, the free energy A(R) is obtained from eqn (2.26) as

2

AR)=kg T% + terms independent of R. (2.97)

To estimate the effect of the excluded volume interaction, we disregard
the connectivity of the chain, and calculate the interaction energy of a
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‘segment gas’ confined in a volume R? (R =|R)). Since the concentration
of the segment gas is ¢ =N/R’, the interaction energy is estimated as
vk T¢°R>. (Here the numerical factor is disregarded at this level of
approximation.) Thus

3R? Nz) (2.98)

N2 Y

The average size of the polymer can be estimated from the value of R
which minimizes A. From 3A/3R =0, we have

1/5

R =‘\/Nb(\/;v) o N33,
This gives the exponent v =3/5 already quoted, which is close to the
experimental value.?”"8

Though the exponent v is close to the experimental value, the
prediction of this theory for other quantities turns out to be inadequate:
for example, the expression for the free energy (eqn (2.98)) is not
consistent with the distribution function of the end-to-end vector ob-
tained by computer simulation.”® Also it suffers from an unreasonable
behaviour of the entropy. .

Because of the very simple structure of the theory, the theory is
generally regarded as a prototype of a mean field theory. It must,
however, be realized that it is not a real mean field theory in that no
mean field has been calculated. The mean field theory will be discussed
later on.

A(R) = kBT(

(2.99)

Perturbation calculation. If the excluded volume v is small, the distribu-
tion function (2.95) can be expanded with respect to v.***' Hence (R?)
can be calculated as a power series of v. The calculation of the first term
is given in Appendix 2.III. Though straightforward, such a calculation
becomes quite tedious.* The latest result™ is

(R?) = Nb*(1 + 4z — 2.07522 + 6.2972° — 25.057z*
+116.13525 — 594.71725+ .. .) (2.100)

where the expansion parameter is defined by

z= (%)3,2 ”Z:,N . (2.101) |

Note that z is proportional to VN. Thus the perturbation expansion
becomes useless for large N. This situation is entirely different from the
virial expansion of the imperfect gas, where the expansion parameter is
the average concentration &, which is proportional to N*~> and is very
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small in the case of polymer problems. The reason for this difference is
that for polymers, the collision between any pair of segments affects the
end-to-end vector seriously (the effect being of order 1), whilst in
imperfect gases the effect is only of order of 1/N. The perturbation
calculation in the polymer problem is justified only when none of the
polymer segments is likely to collide with the other segments. Thus what
must be small is the average number of collisions taking place in the
whole polymer coil:

N vVN

chsz(va)3= 5

(2.102)

which is z.

It has been shown that the series (2.100) is asymptotic, and suffers
from an explosive increase in its coefficients which increase roughly like
n".3 However, by an appropriate resummation technique, useful infor-
mation can be drawn about the asymptotic behaviour of large z.>**" In
particular, the exponent v is estimated as™®

v =0.588 + 0.001. (2.103)

Uniform expansion model. The difficulty in the perturbation calculation
can be improved by a simple scheme of calculation.? In this scheme, it is
assumed that the expansion of the chain is represented by the expansion
of the bond length, i.e., that the distribution function of R, is well
approximated by

Wi, enp| -2 [ an( )] 2100
0

where b’ is the expanded bond length to be determined. Let {...)' be
the average for this distribution function. The average (R?) for the
distribution function (2.95) is written as

(exp(—B[R.)(Rx — Ro)*)’

B = e BIR.DY (2109

where ~ N
B[R,]=3(b~2—b'"?) f dn(aa:") +1v f dn f dm (R, - R,,). (2.106)

0 0 0

Now if eqn (2.104) is a good approximation to eqn (2.95), B[R,] can be
regarded as small. Hence eqn (2.105) is evaluated as
(1 - B[R.D(Rv — Ro)*)’

n_(
(R == BR,])’

(2.107)
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The average is evaluated straightforwardly (see Appendix 2.III) as
(R*) = ((Ry — Ry)*)' — (B[R,J(Ry — Ro)’)’ + ((Ry — Ry)*)'(B[R,])’
b 4b°

=Nb'2+Nb'2('I7—l—§b72) (2.108)

where z is a parameter defined by eqn (2.101). Now if eqn (2.104) is the
best approximation of eqn (2.95), the first-order correction (the under-
lined part) must vanish. This condition gives

b"? 4 b°
'51‘—1—3?2-0. (2109)
Let us define a swelling coefficient a:
2 _ (R?)
=Nb2 (2.110)
Equation (2.108) gives o = b'/b, so that eqn (2.109) is written as
- o’ =14z (2.111)

Equations (2.110) and (2.111) determine (R”). For small z, this theory
agrees with the result of the first-order perturbation expansion (eqn
(2.100)). On the other hand, for large z the theory gives R« N** in
agreement with eqn (2.99). Thus the theory gives an interpolation
between the two cases.

A warning must be given about the assumption involved in this theory.
Although eqn (2.104) gives a good approximation for (R?), it gives
erroneous predictions for other quantities; for example eqn (2.104)
wrongly predicts that the distribution of R is Gaussian. In general the
optimum choice of b’ depends on the quantity under consideration: to
calculate a certain quantity A[R,], we expand (A[R,]) as

(A[R,]) = (A[R,])' — (B[R,JA[R,])’ + (B[R,])'(A[R,])'
(2.112)

and choose the parameter b’ so that the underlined term vanishes. This
prescription works well. For example, the distribution function of the
end-to-end vector is calculated as®

' 2
exp[—%(%) ] for R=<R,

2\¥2 3 /R\? _
f"P[‘(s) “ () ] RS

O(R, N) (2.113)
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This function has been found by Domb et al.? in numerical simulation of
the problem on a lattice, and has also been discussed theoretically by
Fisher.

Mean field theory. The simple theory given in the first part of this section
can be improved by mean field calculation.*! Let us consider an ensemble
of chains whose ends are fixed in space, one at the origin and the other at
point R. Let &(r) be the average density of the segment:

&(r) =fdn(a(r—n,,)) . (2.114)

Then the segment at r feels the mean field potential é(r)vkz7T, whence
the statistical distribution of the polymer becomes

‘PM;{R,,]«exp[ b7 Id (aR) —vfdnc(R,,)] (2.115)

For the distribution function, the Green function G(R, 0, n) is calculated
by (see eqn (2.53))
8 b* &

|2 %o+ V) |GR, 0, my = 8@ 6Y).  @.116)

Given G(R, 0, n), the segment density &(r) is calculated by

&é(r) = f dnG(R, r, N-n)G(r,0,n).  (2.117)

G(R, 0 N)

Equations (2.116) and (2.117) give a closed equation for G(R, 0, N). The
detailed calculation within this theory is involved, but it predicts many
interesting features of the excluded volume chain. For example, the
structure factor g(k) at high k region is shown to be

gk)«xk=® for kR,>1 (2.118)

which can also be obtained from the uniform expansion model. Fluctua-
tions have been added to this model by Kosmas and Freed,* but the
essential features of the result turned out to be the same.

Renormalization group theory. The mean field theory neglects the fact
that the collisions between the segments in the polymer are strongly
correlated: a collision of any pair of segments is likely to induce other
collisions since the segments are connected. To take into account such
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correlation, the renormalization group technique, developed in the study
of the critical phenomena, has been applied to the polymer problem. This
method, originally invented by Wilson,*® was first applied to polymer
problems by de Gennes* and des Cloizeaux.*’ A particularly clear result
is given by Wilson and Fisher* based on the observation that in a space
of higher dimensionality, the effect of correlations becomes weak and the
simple perturbation expansion becomes applicable. For example, in the
excluded volume problem if the polymer is embedded in d-dimensional
Euclidean space, the expansion parameter z is N°v/(VN b)? « N#~92
which becomes small for large N if d > 4. (The dimension 4 is called the
critical dimension.) It is thus possible to develop an expansion scheme
regarding € =4 — d as an expansion parameter. Such a scheme gives v as

v=41+3e+ 6. . ). (2.119)

For d =3 this gives v =0.592, which compares well with the more exact
result®®*® v = (0.588 £ 0.001. In any case, the deviation in the indices from
0.6 is quite small.

The actual calculation method of the renormalization group theory is
quite complex and has many variations. Details can be found in
references 18, 45, 47, and 48.

2.6 Scaling

Though the renormalization group method is highly sophisticated, certain
conclusions derived from the theory are easy to understand and quite
powerful in understanding the nature of the excluded volume chain.’

The basis of the renormalization group theory is to study how physical
quantities change when the basic units of the physics are changed. Before
explaining this idea for the excluded volume chain, let us first consider
the Gaussian chain.

As was explained in Section 2.2, the statistical property of the
Gaussian chain does not depend on the local structure of the chain.
Therefore instead of the original Gaussian chain consisting of N segments
of bond length b, we can start from a new Gaussian chain which consists
of N'=N/A segments with the bond length VA b (see Fig. 2.9). The
transformation from the old chain to the new chain is the change in the
parameter

N—>N/A,  b—>bVA. (2.120)

If one knows how a physical quantity changes under this transformation,
one can draw conclusions about the dependence of the physical quantity
on the parameters N and b.
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Fig. 2.9. (a) Original chain and (b) new chain, in which A =2.

As an example, consider the size of the Gaussian chain. Various length
can be defined to characterize it. For example:

(i) Root of the mean square of the end-to-end distance, R = (R*)"?2

(ii) Root mean square of radius of gyration, R, = (I, (R, — Rg)*/N)"?

(iii) Mean end-to-end distance (|R|).

(iv) The average of the longest distance connecting two beads in the
chain, (maxn.m 'Rn - le)

The first three quantities are easily calculated, but the last is not.
However, without doing any calculation, one can show that all these
quantities are proportional to VN b. This can be shown by the following
argument: the average size of the polymer, however it is defined, has the
dimension of length and must be written as

average size = F(N)b. (2.121)

The size of the polymer must be invariant under the transformation
(2.120), i.e.,

F(N)b=F(N/A)VAb (2.122)
which is satisfied only when

F(N)b = numerical constant X VN b. (2.123)

Thus the distinction among the various lengths is only in the numerical
constant.

The scaling argument is developed quite generally in statistical
mechanics?>*~° and indeed historically was the source of the renor-

malization group theory. Suppose therefore that a similar property exists
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for the excluded volume chain: i.e. the excluded volume chain is
characterized by N and b, and its size is independent under the following
transformation:

N— NIA, b— bAY (2.124)

where v is the exponent in R « N”. By the same argument as above, we
can show that the average size of the excluded volume chain must have
the following form:

average size = numerical constant Nb. (2.125)

Equation (2.125) indicates that there is only one length-scale to charac-
terize the macroscopic size of the polymer. In particular, the difference
between R and R, is only in the numerical factor

R, = numerical factor X R = N"b. (2.126)

According to the renormalization group calculation,’*? the numerical
factor is about 0.406 which is close to 1/V6 = 0.40825.

In general, under the transformation (2.124), the physical quantity A
changes as

A-> M*A. (2.127)

The parameter x depends on the nature of A and can be inferred by
physical argument. From this property much information can be obtained
on the nature of the polymer chain.

As an example, consider the structure factor g(k) of an excluded
volume chain. From the dimensional analysis, g(k) must be written as

g(k) = F(kb, N). (2.128)

Under the transformation, g(k) changes from g(k) to g(k)/A since g(k) is
proportional to the number of scattering units N. Thus the function F
must satisfy

F(kbA*, N/A) = % F(kb, N). (2.129)
For this to hold for arbitrary A, g(k) must have the following form:f
g(k) = NF(kbN"). (2.130)
Since N'b = R,, this equation may be rewritten
g(k) = NF(kR,). (2.131)

This equation determines the general functional form of the scattering

t Here a common symbol F is used to denote various functions. The functional form of F in
eqn (2.131) is not the same as in eqn (2.130).
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function. Particularly useful information is obtained from eqn (2.131) for
the high k region. If kR, >>1, g(k) should be independent of N. This
happens only when g(k) is written as

g(k) = const N(kN*) V" «c k1. (2.132)

If v =3/5 this gives g(k) « k2, This k dependence is consistent with the
result of the mean teld theory. Calculations of g(k) by the renormaliza-
tion group method are given in refs 51 and 52.

The scaling concept has been extensively applied to various polymer
problems. A variety of beautiful applications are described in the book
by de Gennes.'” We shall see them again in later chapters.

Appendix 2.1 Gaussian distribution fanctions

2.1.1 Gaussian distribution for a single variable

Here we summarize some useful properties of the Gaussian distribution
function. First we consider the case of a single variable

W(x) = (A/2x)"? exp[ —3A(x — B)?]. (2.1.1)
The well-known formula for the Gaussian integral is
o bz

I dx exp(—ax?* + bx) = (w/a)"? exp(a) (2.1.2)

where a is a positive constant and b is an arbitrary complex variable.
When b is real, eqn (2.1.2) may be written

j dx exp(—ax? + bx) = (w/a)"? exp[max,(—ax*+ bx)] (2.13)

where max,(...) means the maximum value of the expression in the
parenthesis when x is varied from — to +,
Let (...) be the average of the distribution function of (2.I.1),

(...)= fdx. (). (2.L4)

Equation (2.1.3) then gives
2

(exp(8x)) = exp[max,(&x — 3A(x — B)?))] = exp(EB + ﬂ) . (2.15)
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From eqn (2.1.5), the first and the second moment are calculated as

(x) = 5% (exP(E) o= B 2.16)
and
() = 322 (exp(Ex) gm0 = B2+ 5 @17)
whence

A=[(x") =) =({E-(x))")"" and B=(x).

The Gaussian distribution is thus completely specified by the mean value
(x) and the variance ((x —(x))?)=(Ax?), and eqn (2.1.1) may be
written as

Y(x)=(2rx{Ax?)) 12 exp( - (xz(_%))l) . (2.1.8)

2.1.2 Gaussian distribution for many variables

The Gaussian distribution for a set of real variables x,, x5, . .., Xy = {x}
is defined as

W(xy, X3, - .., xn)=C exp[ —% S Apm (X = Bo) (X — ,,.)] (2.1.9)

where A,,, is a symmetric positive definite matrix, i.e.,
Aum=An, and D A, xxn=0 forallx,, (2.1.10)

and C is a normalization constant given by
C = (det[Apm])*(27) N2, (2.1.11)

Using the coordinate transformation x,=x, — B,, eqn (2.1.9) is trans-
formed to

W(xy, Xz, ..., Xn)=C exp[ —% S A,,,,.x,,x,,,] . (2L12)

Hence we shall consider only this form.
For the distribution (2.1.12), the generalization of the formula (2.1.5) is

(e[S o)) =em|3 3 A mtitn] L1
where (A™"),,, is the inverse of the matrix of A,,,,,
z (A—l)nmAmk = énk- (2114)



GAUSSIAN DISTRIBUTION FUNCTIONS 37

Proof: Eqn (2.1.3) gives

f dx; exp[-E A XX + 2,:‘ Enx,.]

1
=V2r/A, exp[max,‘( -3 D ApXnXm + O, Ean)] . (2.1.15)

The exponent on the right-hand side of eqn (2.1.15) is a quadratic
function of x,. Thus the integral over x, is repeated using eqn (2.1.3).
Repeating this process for x3, x4, ..., we get

(i3]

The constant in eqn (2.1.16) must be 1 since eqn (2.1.16) must hold for
E,=&,= -+ =&y =0. Thus eqn (2.1.13) is proved.
Since the moment (x,x,, ) is calculated as

(X)) = [BE,.a;E,,. <exp[§i: §,x,]>]w . (2.1.18)

)
it follows from eqns (2.1.13) and (2.1.18), that
(XpXm) = (A7 e (2.1.19)

Equation (2.1.13) is thus rewritten as

<exp(§n‘, ;,,x,,)> = exp[% 3 B (xk )] . (2.1.20)

By straightforward calculation, it can be shown from eqn (2.1.20) that

5
5E, OE,, &, 9, P B 2, £ (xx '>]

= (XnXm ) (X1} + (i) (ms) + (X%0) (X ). (2.1.21)
In general we have the following formula (Wick’s theorem):

(XnXny s+ < Xny,) = D (X Em) KmaXoma) - - - (Xmgp-iXmg,)  (2.1.22)
all pairing

(XXX Xy) =

5/)‘0
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where (m;, my, ..., my,) stands for the permutation of (n,, n,, ...,
n,,) and the summation is taken over all possible pairings.

An important property of the Gaussian distribution is that if the
distribution of x, is Gaussian, any linear combination of x,,,

X=> a,x,, (2.1.23)
obeys the Gaussian distribution, i.e.,
W) = 2 (X)) exp| 57 ] (2.124)
2 X%
where
(X?) =D, 8,8 {XnXm)- (2.1.25)

The proof is straightforward. By definition

N

W(X)= kl'[ dx, W(xy, X3, . . . , Xy) 6(X—2 a,,x,,).
-1 n

After the integral over x,, which is carried out easily because of the delta

function, the integrand becomes a Gaussian function of x5, x3,..., Xy

and X. Successive integrations over x,, X3, ..., Xy are done using eqn

(2.1.2) and give a Gaussian function of X, which is eqn (2.1.24).

2.1.3 Gaussian distribution for complex variables

For the complex variables z;,z,...,2zy, We can also define the
Gaussian distribution function
Y(z,,23,...,2Zn)= Cexp[ - A,,,,,z,’:‘z,,,] (2.1.26)
n,m

where the matrix A,,, is assumed Hermitian with positive eigenvalues,
A=A, and D A,.z3z,=0. (2.1.27)

The integral over z, is defined to be made over the entire surface of the
complex plane; i.e., if x and y denote the real part and the imaginary part
of z respectively, then

Idz---ajdxjdy.... (2.1.28)

The average of a function F(z;, z, . . . , zy) is defined as

(F(z, z,...)) = Il_[dx,, I [1dy.F(z1, 25, .. )¥(z1, 22, - - -)-
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The generalization of eqn (2.1.3) to complex variables is, for a positive
A and a complex &,

Idz exp[—Azz*+z5* + z‘é] =§exp[maxz(—AZZ* +z8* +z*E)]
(2.1.29)

where max,(...) denotes the maximum value when z is varied over the
entire complex plane. Equation (2.1.29) can be proved by direct
calculation. Using eqn (2.1.29), one can prove:

0 (x| S @t + 812 |) = exp| T 81802zt | @130

and
(i) (znzm) =(A7)m. (2.1.31)

2.1.4 Functional integral

If the subscript n of x, is regarded as a continuous variable, the set of
points (x,, x5, . . ., Xy) represents a continuous function, and the integral
over the set (xy, X,,...,xy) reduces to the integration over all the
functions, and is called the ‘functional integral’. It is denoted by the

symbol dx,; i.e.,
]H dx,, — | éx,,.

continuous limit

The formula in the functional integral is obtained by taking the
continuous limit of the discrete variables. For example, as a generaliza-
tion of eqn (2.1.16), we have

1 N N N
f ox, eXP[ ~3 f dn I dmA X X, + f dnE..x..]
0 0 0

. exp[max( - -21. Tdn TdmA,,,,,x,,x,,, + Tdng,,x,.)] 2.13)
0 0 0

or

<exp[zdn.§,,x,,]> - exp[% Idn Idm(A“),,,,,f;‘,,E,,,] (2.1.33)

where

N
f dm(A™) A,y = 8(n — j). (2.1.34)



10 STATIC PROPERTIES OF POLYMERS

Appendix 2.II Differential equation for G(R, R'; N)
For U,=0, G(R, R'; N) becomes the probability distribution of the
end-to-end vector and is given by

2anz)—w ex - E(R‘__R')z>e(1v) (.IL1)

Go(R - R'; N) = (

h 3 2Nb?
where
1, N>0,
O(N)= {o, N <0, (2.11.2)
Using the Fourier transform (see eqn (2.25))
Nb2k?
GoR—R';N)= f (;:)3 exp(—ik - (R — R'))exp( )e(N)
one can easily check (2.11.3)
8 . , 2k2
SN CoR —R';N) = I(M)3 exp(—ik - (R—-R ))[
Nb?k?
X exv(— - )e(N) +a(1v)]
_» & . '
=< a2 R R N)+oR -R)6(N). (2114)

To derive an equation for G(R, R'; N) for U, #0, we use eqn (2.49)
for small AN:

G(R, R'; N + AN) = I dR"G(R, R"; AN)G(R", R'; N). (2.IL5)

For n between N and N + AN, R,, is not far apart from R. Thus if U,(r) is
a smooth function of r, the energy is approximated as

N+AN

f dnU.(R,) ~ ANU,(R). (2.1L6)

N

Then G(R, R"; AN) is easily obtained from eqn (2.46),

G(R, R’; AN)-—'exp( ~L ANy, (R))GO(R —R";AN). (2IL7)

kgT
From eqns (2.11.5) and (2.II.7)
G(R, R'; N + AN) = exp( — ANU, (R))

x f dR"Gy(R — R"; ANYG(R", R"; N). (2.IL8)



PERTURBATION CALCULATION 41

For small AN, Go(R — R"; AN) has a sharp peak at R = R’. Therefore
the integral in eqn (2.11.8) can be evaluated by expanding G(R", R’; N)
with respect to r=R — R":

I= f dR"Gy(R - R"; AN)G(R", R'; N)

- f drGy(r; AN)G(R ~r, R'; N)

az
"8 3R, R,

fdrco(r,AN)( —y— a?z +1 )G(R,R';N). 2.11.9)
Since

8apy  (2.1110)

2
f drGy(r; AN)r, =0, J’ drGo(r; AN)ryrs = AN %—

the integral becomes
aZ
+$ANb? )
= (1 ANb IR
Thus to the order of AN, eqn (2.11.8) is written as

G(R, R'; N). (2.11.11)

(1 + AN;N)G(R, R';N)= (1 -I%TANU (R))

X (1 + 3AND? g—z)am, R';N). (2.11.12)
Comparing the terms of order AN, we have
3 b* & 1 ,.
(azv'?é? o7l (R))G(R R;N)=0.  (2IL13)

This equation holds for N > 0. To account for the singularity at N =0, we
use eqn (2.11.7) for small N, i.e.,

G(R, R';N) = exp( NU(R))GO(R RN) (2IL14)

kgT
which gives (R — R') 8(N) on the right-hand side of eqn (2.53).

Appendix 2.III Perturbation calculation for the excluded volume
effect

Let {...), denote the average for the distribution function of the ideal
chain, then for the excluded volume chain
2 _ (exp(=U))(Ry = Ro)*)o
(R?) = ,
(exp(=Us))o

(2.I11.1)
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where

N m
Uy=v f dm f dn 8(R, - R,,) (2.111.2)
0 0

(here kpT is put equal to unity). Expanding eqn (2.III.1) to the first
order in U,;, we have

2\ _ <(1 — Uy)(Rn —Ro)z)o
<R ) - (1 - Ul)o

= ((Rn = Ro)*)o(1+ (Uy)o) = (Ui(Ry — R)*)o

= Nb2(1 +v Tdm Tdn (6(R, — Rm))O)
0 0

—v | dm | dn{8(R, — R,,)(Rx ~ Ro)*)o. (2.111.3)

e T
S — ¥

First we calculate
I=(8(R, - R,)(Rx — Ro)*)o, (2.111.4)

vhich is written, using the Green function Go(R, R', N) in free space
‘see eqns (2.50) and (2.51)), as

[= jdn,, dR,, dR,Gy(Ry — R,,; N - m)
X Go(R,, = R,; m = n)Gy(R, — Ro; n) 8(R, — R,,)(Ry — R,)*
- [ dRy AR, Go(Ry ~ Ry; N = m)Go(0; m = n)
X Go(R, = Ro; n)(Ry — Ry)* (2.111.5)

"o do the integral, we writ¢ Ry—R, as (Ry—R,) - (R, -~ R;) and
ntegrate first over Ry and then over R,. The result is

I=Gy0;m —n)(N —m + n)b>, (2.111.6)
“hus

N m
(Uy(Ry — Ro)o=v f dm f dn(N —m +n)b*Go(0; m —n). (2.1IL7)
0 0
imilarly

() =v f dm f dnGe(0; m — n). (2.11L8)
0 0
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The integrals in eqns (2.I11.7) and (2.II1.8) diverge, but the divergent
terms cancel with each other in (R?). In fact, from eqns (2.II1.3),
(2.111.7), and (2.I11.8), we have

N

(R?*) = sz(l +v ImednGo(O; m —n)(m — n))

0

=sz(1 + deden(zx (m3_ n)bz)m(’" —n)), (2.11IL.9)

which converges and gives the first term in eqn (2.100).
Next we derive eqn (2.108). The integral we now have to evaluate is

J= <(a;,,)2m~ - Ro)2>'- (2.111.10)

To calculate this we replace dR,/on by R, — R, _,, and rewrite Ry — R,
as

Ry — R, = Ry~ Rn) +(R,—R,-)) + (Rn~1 - R). (2-111'11)

Since there is no correlation among Ry ~R,,, R, ~ R,-y, and R, _, — R,,
eqn (2.111.10) becomes

J= ((Rn _Rn-l)2>'<(RN _Rn)z)' + <(Rn - Rn-l)4)’
+ (R, — Rn1)’) {(Ru-1 = Ro)*)'. (2.1IL12)

Since ((R,, — R,)*)' =(m —n)b’*> and {(R,, — R,)*)' = (5/3)(m — n)*b*,
eqn (2.1II1.12) becomes

J=Nb"+%bp", (2.111.13)
which gives eqn (2.108).
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3
' BROWNIAN MOTION

3.1 . Introduction

Polymers in solutions incessantly change both their shape and position
randomly by thermal agitation. This Brownian motion dominates various
time-dependent phenomena in polymer solutions such as viscoelasticity,
diffusion, birefringence, and dynamic light scattering, which are to be
discussed in subsequent chapters. In this chapter, we study the basic
theory of Brownian motion. Since the general aspects of the theory of
Brownian motion have already been discussed in many articles,’” we
shall limit the discussion to topics which will be useful in the application
to polymer solutions and suspensions.

In principle, Brownian motion can be discussed starting from the
dynamical equation of motion of the Brownian particle and the fluid
molecules. However, this microscopic approach is not useful for calculat-
ing the various dynamical quantities we are interested in. Here we take a
phenomenological approach, regarding Brownian motion as a kind of
stochastic process, and construct a phenomenological equation describing
Brownian motion based on known macroscopic laws. This approach,
originated by Einstein,’ is limited by several conditions, such as that the
time-scale and the length-scale under consideration are much longer than
those characteristic of solvent molecules, and that a linear relation holds
between fluxes and forces. For polymer solutions and suspensions, these
conditions are normally satisfied without any problems, and the theory
we shall describe in this chapter can be regarded as a general base for
describing their dynamics.

The phenomenological equation for Brownian motion has two seem-
ingly different, but essentially the same, forms—the Smoluchowski
equation and the Langevin equation. The Smoluchowski equation is
derived from the generalization of the diffusion equation and has a clear
relevance to the thermodynamics of irreversible processes. The Langevin
equation, on the other hand, has no direct relationship to thermo-
dynamics, but is capable of describing wider classes of stochastic
processes.? We shall first study the Smoluchowski equation, and then
consider its equivalence to the Langevin equation.

3.2 The Smoluchowski equation

3.2.1 Diffusion of particles

The phenomena in which the effect of Brownian motion appears most
clearly is diffusion: small particies placed at a certain point will spread out
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in time. For the sake of simplicity we will consider one-dimensional
diffusion. Let c(x, t) be the concentration at x and t. The process of
diffusion is phenomenologically described by Fick’s law, which says that if
the concentration is not uniform, there is a flux j(x,#) which is
proportional to the spatial gradient of the concentration, i.e.,

. ac

jx, )=-D— (3.1)
where the constant D is called the diffusion constant.

The microscopic origin of the flux (eqn (3.1)) is the random motion of
the particles: if the concentration is not uniform, the number of particles
which happen to flow from the higher concentration region to the lower
concentration region is larger than the number of particles flowing in the
other direction (see Fig. 3.1). This imbalance in the number of flowing
particles gives (to the first order in the concentration gradient) eqn (3.1)
for the flux. Note that the flux comes entirely from fluctuations in the

c(x)?

x

Dix) 4

x
C
o~
-© )
-O
O~
G:.o..@@-
-O o=
O o *°
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Fig. 3.1. Microscopic explanation for Fick’s law. Suppose that the particle

concentration c¢(x) is not uniform. If the particles move randomly as shown by the

arrows, there is a net flux of particles flowing from the higher concentration

region to the lower concentration region. Here the diffusion constant of the

particle, which determines the average length of the arrows, is assumed to be
constant.



48 BROWNIAN MOTION

velocity: the average velocity of individual particles is zero as their
motion is independent of each other.
Equation (3.1), together with the continuity equation

ac_ ﬂ

Eriaimiew (3.2)
gives the well-known diffusion equation for constant D,

oc 3%

5; = ? (3.3)

If there is an external potential U(x), Fick’s law must be modified. The
potential U(x) exerts a force

_su
ox

F= 3.4

on the particle, and gives a non-vanishing average velocity v, which in
the usual condition of weak force, is linear in F so that

13U

= ——— 3.5

V=TT (3.5)

The constant { is called the friction constant and its inverse 1/ is called

the mobility. If the particle is sufficiently large, { can be obtained from

hydrodynamics. For example, if the particle is a sphere of radius g, and

the viscosity of the solvent is 7,, then the hydrodynamic calculation

indicates’
{=6an,a. (3.6)

If the particle is not spherical, the formula for the velocity is not simple
(see Section 3.8 and Chapter 8), but the linear relationship between the
force and the velocity always holds provided that the force is weak.

The average velocity of the particle gives an additional flux cv, so that
the total flux will be

. oc c¢dU
1= Dax Eox’ (3.7

An important relation is obtained from eqn (3.7). In the equilibrium
state, the concentration c(x, ¢) is given by the Boltzmann distribution

Ceq(x) = exp(— U(x)/ksT) (3.8)
for which the flux must vanish:
3 1 oU

—Daccq—zccq§=o. (3.9)
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From eqns (3.8) and (3.9), it follows that in equilibrium

D= M (3.10)
4
This relation is called the Einstein relation.

The Einstein relation states that the quantity D which characterizes the
thermal motion is related to the quantity £ which specifies the response to
the external force. We shall show later that the Einstein relation is a
special case of a more general theorem, called the fluctuation dissipation
theorem, which states that the characteristics of the spontaneous thermal
flucutation are related to the characteristics of the response of the system
to an external field.

Using eqn (3.10), egn (3.7) can be written as

o _1(, pde, oU
j= C(kBTa “ax) (3.11)
Hence the diffusion equation becomes
d_3ad1 ac aU
ot oxt (kBT “ox ) (3.12)

This equation is called the Smoluchowski equation.

The above argument for deriving the Smoluchowski equation can be
summarized in a more formal way Equation (3.11) can be rewritten as

j= 1

¢ e

which has a thermodynamic significance. The quantity U(x) + k3T Inc is

the chemical potential of noninteracting particles of concentration c.

Thus eqn (3.13) states that the flux is proportional to the spatial gradient

of the chemical potential. This is a natural generalization of Fick’s law

because when the external field is nonzero, what must be constant in the
equilibrium state is not the concentration, but the chemical potential.

Now if we define the flux velocity by v, =j/c, eqn (3.13) gives

13
y=—75 GsTInc+0) (3.14)

c—(kBT Inc+ U), (3.13)

which is quite similar to eqn (3.5). The only difference is that the
potential U(x) is now replaced by the chemical potential U(x)+
kpT Inc(x, t). If this replacement is made, the Smoluchowski equation is
derived from the usual continuity equation

ac a
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Thus the Smoluchowski equation can be formally derived from the
macroscopic equations (eqns (3.14) and (3.15)), where the fluctuations
have been dealt with by invoking the thermodynamic variable—the
chemical potential U(x) + k3T In c(x, t)—instead of the potential U(x).

3.2.2 Diffusion in phase space

So far we have been considering the diffusion of concentration. The same
argument will hold for the probability distribution function W(x, ¢) that a
particular particle is found at point x at time ! since the distinction
between c(x, t) and W(x, ¢) is, for non-interacting particles, only in the
fact that ¥ is normalized. Thus the evolution equation for the probability
W(x, t) is written as

oW _ 81( 8‘1‘ U ) (3.16)

RIS
which will also be termed the Smoluchowski equation. (In some literature
this equation is called the Fokker—Planck equation, or the generalized
diffusion equation, but the original Fokker-Planck equation was for
diffusion in velocity space, so we do not employ the term here.)

Having seen the basic principle, it is easy to derive the Smoluchowski
equation for a system which has many degrees of freedom. Let
X1, X2, ..., Xy={x} be the set of dynamical variables describing the
state of Brownian particles. To construct the Smoluchowski equation, we
have to know first the relation between the average velocity v,, and the
force F, = —3U/5x,. Such a relation is generally written as

= % Ly ({x})Ey. (3.17)

The coefficients L,,, are called the mobility matrix, and may be obtained
using hydrodynamics. It can be proved that L,,, is a symmetric positive
definite matrix:

Lpn=L,, and > EFE,L,,=0 forallF,. (3.18)

Given the mobility matrix, the Smoluchowski equation is obtained from
the continuity equation

Zo3

with the flux velocity being given by

% 5 @) (3.19)

Up = —2 Lom (kBT In¥ + V). (3.20)
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Hence

¥ aU
;,:,. L (kBT - ax,,,q’) (3.21)
which is the basic equation for the dynamics of polymer solutions and
suspensions.

The Smoluchowski equation may be regarded as a phenomenological
tool for describing the fluctuation of physical quantities, and can be
applied to more general situations: for example the equation can be used
to describe the fluctuation of thermodynamic variables (such as con-
centration). In such cases, the potential U(x) must be regarded as the
free energy which determines the equilibrium distribution of those
variables, and the relation (3.17) must be replaced by phenomenological
kinetic equations. We shall see such applications in Chapter 5.

3.2.3 Irreversibility of the Smoluchowski equation

An important property of the Smoluchowski equation is that if U({x}) is
independent of time and if there is no flux at the boundary, the
distribution function ¥ always approaches ¥ equilibrium (¥.,);

W,y = exp(~U(()/ksT) [ [ dlxtexp(- UGk T).  3.22)
To prove this we consider a functional®
A[W] = f d{x)W(kT In ¥ + U) (3.23)

for the general solution ¥ of eqn (3.21). The time derivative of & is
calculated as

—m fd{x}[—(kB InW+ U)+kBT§p] (3.24)

Using eqn (3.21) and the integral by parts (the integral at the boundary
being zero by the assumption), we have

—= -—f d{x}lpz L,,,,,[ (ksTIn¥ + U)][-— (ksT In ¥+ U)]

. f dx)wS L,.,,,[k,,r ][kB Ta— In (ly/tpeq)] (3.25)
which is negative according to eqn (3.18) unless W is identical to W,. As
& will eventually reach the minimum value, W also reaches W, after a
sufficiently long time.
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At equilibrium, [W] becomes the free energy defined in the
equilibrium statistical mechanics:

AW} = —kpT ln( J' d{x)exp(~ U/kBT)). (3.26)

When the system is not in equilibrium, #[¥] is larger than #/[¥,,] and
the difference o/[¥] — A[W¥ ;] represents how far the system is away from
the equilibrium state. We shall call & the dynamical free energy. This
quantity plays an important role in the subsequent discussions.

The approach to the equilibrium state is also shown directly by the
eigenfunction expansion of the distribution function. This is discussed in
Appendix 3.1. More detailed discussion on the Smoluchowski equation is
given in ref. 7.

3.3 The Langevin equation

An alternative description of Brownian motion is to study the equation of
motion of the Brownian particle writing the random force f(¢) explicitly
in the Langevin form:

dv_ _9U
Eg =5t (3.27)

Phys1cally, the random force f(¢) represents the sum of the forces due to
. ‘the incessant collision of the fluid molecules with the Brownian particle.
As we cannot know the precise time-dependence of such a force, we
regard it as a stochastic variable, and assume a plausible distribution
W[f(2)] for it. In this scheme, the average of a physical quantity A(x(?)) is
calculated, in principle, by the following procedure. First eqn (3.27) is
solved for any given f(¢), and A{x(¢)) is expressed by f(¢). The average is
then taken with respect to f(f) for the given distribution function ¥[f(¢)}.

Though various distributions can be conceived for f(f) depending on
physical modelling, here we shall consider only the process which is
equivalent to that described by the Smoluchowski equation. It is shown in
Appendix 3.1I that if the distribution of f(¢) is assumed to be Gaussian
characterized by the moment

(f(0)=0,  (F(Of (") =2LkzT (¢ - 1'), (3.28)
_ l.e., if the functional probability distribution of f(z) is
WO« exp( - 5 [ ey) (3.29)

then the distribution of x(#) determined by eqn (3.27) satisfies the
Smoluchowski equation. Here we check this for a simple special case.
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Consider the Brownian motion of a free particle (U = 0) for which the
Langevin equation reads

dx
S0 (3.30)

If the particle was at x’ at time =0, its position at time ¢ is given by
4
1
x(H)=x' +Ejdt'f(t’). (3.31)
0

Equation (3.31) indicates that x(#) —x’ is a linear combination of
Gaussian random variables f(¢). Therefore, according to the theorem in
Appendix 2.1, the distribution of x(#) must be Gaussian. Hence the
probability distribution of x(f) is written as

W(x, {) = (27B) 2 exp(— (i;Bi)) (3.32)
where
A={(x(1)), B={(x(t)-A)). (3.33)

From eqns (3.28) and (3.31), these moments are easily calculated:

r _l.l ' ny — ../
A=x +€£d: {(f#))=x

-((z ! @) (z Idr"f(m))

and

z !
1
-7 j ar j A FEE) (3.34)
_2kgT
" j dr’ j de” 8(t' — ") = : 2ksT, (3.35)
or by the Einstein relation (3.10)
B=2Dt
Thus
"2
W(x, 1) = i (~—(x_x)). .
(x, )= (4xDt) " exp D1 (3.36)
This is the solution of the Smoluchowski equation
¥ &
—=D-—W. (3.37)

3t 3x?
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Fig. 3.2, Explanation for the term 3D/3x in eqn (3.38). Consider the equilibrium

state for the case of U =0 and 3D/3x > 0. The random force f(¢) in eqn (3.38)

causes displacement of individual particles as shown by the arrows: the particles

on the right are more mobile than those on the left. This creates a net flux of

particles toward the negative direction. To compensate for this, the term 8D/8x
is needed.

The Langevin equation (3.27) is equivaleﬁt to the Smoluchowski
equation only when the diffusion constant D =kz7/{ is independent of
x. If D depends on x, an additional term must be added to eqn (3.27)*

de_ oy . LD
Cd—t— ™ +f(1) +2 v (3.38)

t In some literature, the added term is £ 3D/3x. This difference comes from the difference
in the definition of the integral over the random force which is not properly defined in the
conventional Stieltjes integration. Here we have followed the definition given in ref. 2. Such
complication can be avoided if one uses the Langevin equation written in a difference form
in a finite time interval Az:*'°

13U

x(t+ AN =x(1)— Tor At + VD (x(1))g(0) + % At

where g(7) is a random variable satisfying

() =0, (g(®s(s")) =245,

See ref. 7 for more detailed discussion.
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The derivation is given in Appendix 3.II. Physically, the term 3D/dx is
needed to compensate for the flux caused by the random force which is
dependent on particle position (see Fig. 3.2).

The Langevin equation corresponding to the Smoluchowski equation in
multidimensional phase space (eqn (3.21)) is given by’

—x =3 Lom (——+f,,,(:))+1kBT2 L (339)

m

The distribution of the random force is Gaussian, characterized by the
moment

(£.(0) =0, (3.40)
faOfn(t)) =2(L™)pmkp T 8(t = 1), (3.41)

where (L™1),,, denotes the inverse matrix of L,
2 Lum( L™ Yk = G (3.42)

The Langevin equation (3.39) represents the same motion as the
Smoluchowski equation (3.21). However, each of the equations has
advantages and disadvantages in solving our problems; we shall therefore
use both equations interchangeably.

3.4 Time correlation function and response function

3.4.1 Time correlation function

An important quantity characterizing the Brownian motion is the time
correlation function, which is operationally defined in the following way.
Suppose we measure a physical quantity A of a system of Brownian
particles for many samples in the equilibrium state. Let A(¢) be the
measured values of A4 at time ¢. Usually A(¢) looks like a noise pattern as
shown in Fig. 3.3a. The time correlation function C,44(?) is defined as the
average of the product A(r)A(0) over many measurements:

Can() = (A(DA(0)). (3.43)

Typical behaviour of C,,(?) is shown in Fig. 3.3b: at t =0, C,4(0) is
positive and is equal to the mean square of A in the equilibrium state,
(A?). As time passes, C44(#) usually decreases with time since the value
of A(f) becomes uncorrelated to that at t=0. After a sufficiently long
time, the correlation between A(#) and A(0) vanishes completely, and
C.4(t) becomes equal to {A(¢)) {A(0)) = {(A)% The characteristic time
with which C,,(#) approaches the asymptotic value is called the
correlation time.
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Fig. 3.3. (a) Example of measured values of a certain physical quantity A as a
function of time. (b) A typical behaviour of the time correlation function
Caa(t) = (A(1)A(0)). The correlation time is denoted by ..

The time correlation function (3.43) is termed the auto correlation
function as it expresses the correlation of the same physical quantities at
different times. Time correlation functions are also defined for different
physical quantities,

Can(t)= (A(1)B(0)) (3.44)
which is called the cross correlation function.

3.4.2 Microscopic expression for the time correlation function

Given the Smoluchowski equation, time correlation functions can be
calculated. For the sake of simplicity we use x to denote the whole set of
coordinates x,, x,, . . . , xy appearing in the Smoluchowski equation. Let
G(x, x'; t) be the probability that the system which was in the state x’ at
time =0 is in the state x at time 7. Clearly such probability is obtained
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from the Smoluchowski equation

oG aU
— t —— R .
G(x, x" )= E', " (kBTa 8xm G) (3.45)
and the initial condition
G, x";t=0)=0(x—x")= | | o(x, — x,). (3.46)

Given G(x, x'; t), the time correlation function is evaluated by

(A(H)B(0)) = ] dv f A AG)B()G(x, X' NWu(x)  (3.4)

where A(x) and B(x) denotes the value of the physical quantity A and B
when the system is in the state x.f The meaning of eqn (3.47) is clear. If
the system is in the state x’ at time ¢ =0 and in the state x at time ¢, the
measured value of A and B are A(x) and B(x’), respectively. The
probability that this happens at equilibrium is G(x, x'; )W q(x").
Averaging A(x)B(x') for this probability, we get eqn (3.47).

Though eqn (3.47) gives a general method for calculating the time
correlation function, it is not easy to carry out this procedure since
G(x, x'; t) is difficult to obtain. Usually, more convenient methods are
available, which will be demonstrated in subsequent sections. However,
the initial slope of the time correlation function can be calculated directly
from eqn (3.47). The time derivative of eqn (3.47) is calculated as

% (A(D)B(0)) = Idxfdx’A(x) %(T; B(x" )W (x")

, 3 oG U
B fdxjdx A(x),,,z,,. ox,, Lom (kBTax,,, +G ax,,,)
X B(x" )W q(x").
Att=0, G(x, x';t) becomes d{(x —x’), hence

= [#A®3 2 Lo ko T2 (B

+ B(x)¥ o(x) —a—U] (3.48)

m

t Note that here two functions, A(¢) which represents the measured value of the physical
quantity at time ¢, and A(x) which represents the dependence of the physical quantity on
the dynamical variables x, are distinguished by their arguments. To avoid confusion, it may
be preferable to denote the latter as A(x), then A(t) can be written as A(x(t)). However,
since this leads to over cumbersome nomenclature, we do not use it here.
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Using integration by parts and eqn (3.22), we have

d _ A(x) 38B(x)
S (A0BO)| = kT [& S W) T L3
= kTS (g: L.. :f > (3.49)

The average in the final expression is for the equilibrium distribution
function W, (x). The initial decay rate I'” defined by

rO=-S(AWBO)| /(AB)-(A)(B))  (.50)
=0
is thus given by

0) _ kgT a_A 2
M =28y - (4)(B) §n<axn Lom ax,,,>‘ (3-31)

3.4.3 Fluctuation dissipation theorem

Consider a time-dependent external field A#(¢) (magnetic field, electric
field, or velocity gradient field) applied to a system in equilibrium. In
general, the field perturbs the system, and changes the average values of
physical quantities from those in the equilibrium state. If the field is
weak, the change in any physical quantity is a linear functional of the
field, and is written as

(A~ (A)o= [ ar'ute— (), (3.52)

where (A(t)), denotes the value of A at time ¢ when the field is applied
and (A), the equilibrium value of A4 in the absence of the field. The
function u(¢) is called the response function.

In many cases, the effect of the field on the system is expressed by a
potential such as

U.ulx, £} = —h(£)B(x). (3.53)

The quantity B(x) is said to be conjugate to the field 4(¢). In such cases,
the response function is related to the time correlation function by

1 d
=——=— : .
KO =~ gy Can() (3.54)
This theorem is called the fluctuation dissipation theorem.>’
To prove eqn (3.54), we consider the situation that a constant field 4 is
applied for a long time until the system reaches equilibrium, and that the
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(o) t

Fig. 3.4. Relaxation function. When a constant external field is switched off at
t =0, the average of a physical quantity A relaxes from the equilibrium value in
the presence of the field, {A)s, to that in the absence of the field {A),. The
time-dependence for #>0 is described by the relaxation function a(f) as

(A} + a(t)h.

field is then switched off at ¢ = 0 (see Fig. 3.4). In such a case, the average
value of A will change as shown in Fig. 3.4b.

(A@))n=a(Oh + (A), (3.55)

The function a(f), called the relaxation function, is expressed by the
response function u(¢) as

0 -
a(t) = j de' u(t — ') =]dx'u(:'). (3.56)

Now (A(f)), can be calculated if the distribution function W(x, ¢) is
known:

(A= [ axA@w(, ). (3.57)

Since there is no external field for : >0, W(x, ¢) is related to W(x, ¢ =0)
by the Green function G(x, x’; #) in the absence of the field

W(x, £) = f dx'G(x, x'; )¥(x, 0). (3.58)
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Since W is at equilibrium in the presence of the ficld at time #=0:
expl—~(U(x) — hB(x))/ksT]

[ ax expl—(Ux) - hBE@) ks T]

which can be expanded with respect to 4 as
exp(—U(x)kgT)(1+hB(x)/kpT)

fdx exp(—U(x)/kBT)](l +h{B)o/kgT)

- lp,q(1 4B [B(sz_T(BM). (3.60)

From eqns (3.57), (3.58), and (3.60), it follows that

h[B(x") — (B )o]
ksT

Using the stationary property of the equilibrium state,

W(x, 0) = (3.59)

Y(x, 0)=

(A())), = j dx J' dr'A(x)G(x, x';t)‘l’eq(x')(l + ) (3.61)

W) = [ G, 3 Wenla), (.62)

and the definition of the time correlation function, we get
h 4 r !
(A@®))n=(A)o+ k—*TdeJ’dx'A(x)G(x, x";8)(B(x") ~ (B )o)¥cq(x')
B

- <A>o+k—i‘—T[<A(r)B(0)>o— (A)o(B)a) (3.63)

From eqns (3.63) and (3.55), it follows that

() =k—:;(cu(r) —(A)o(B)o) (3.64)

which leads to eqn (3.54) after differentiation with respect to £

Note that in the above proof the explicit form of the time evolution
equation for W is not used. Therefore the proof applies to a pure
dynamical system which is described by the Liouville equation. The
fluctuation dissipation theorem holds quite generally in physical systems
near equilibrium.

In the case of A = B, the fluctuation dissipation theorem can be stated
in a more convenient form. Let us define the growth function S(¢) as the
response to the sudden application of a step field (see Fig. 3.5):

(A@))n—{(A)o=B(0)h (3.65)
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(1)
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<Ay —————
<A >0
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) !

Fig. 3.5. Growth function. When a stepwise external field is apphed (a), the
average of a physical quantity A changes as shown in (b). The time evolution is
described by the growth function B(¢) as {A),+ B(H)h.

From eqn (3.52) we have

By =[aru@). (3.66)
Using eqn (3.54),
B = £ 7(Can(0)~ Can(®) =37 7(AGF) + (AQF) ~AADAO))
1 2
=527 (40 - 40P (3.67)

A simple application of egn (3.67) is the Einstein relation. Let us
consider that A denotes the x component of the position vector of the
Brownian particle. The field conjugate to x is the external force F,,.
When F,, is applied, the particle begins to move with the constant
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velocity F.,/{. Thus

B(1)= é (3.68)

Hence eqn (3.67) becomes

£= 5 (GO —x(@)). (3.69)

Since, by definition of D, {(x(f) — x(0))*) is 2D¢, eqn (3.69) leads to the
Einstein relation

D
s (3.70)

1:
£

3.5 Brownian motion in a harmonic potential

In this section we study a simple system, the one-dimensional Brownian
motion of a particle in a harmonic potential:

=1kx2. (3.7)

Although this is a very simple system, it is a prototype of the problems
which we shall discuss later on.

3.5.1 Smoluchowski equation

Let us first calculate the time correlation function (x(#)x(0)) using the
Smoluchowski equation. In principle this is obtained from eqn (3.47)

(x(9)x(0)) = I dedx'xx’G(x, () (T72)

W_ (x) = (2“t”7)-mexp( - 2’; ZT) (3.73)

and the Green function G(x,x’;t) is to be determined from the
Smoluchowski equation

where

5 . .. _13( 3G
50 =52 (k,,ra +kxG) (3.74)

under the initial condition
G(x, x";0)=8(x — x"). (3.75)
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However, we can show that (x(¢#)x(0)) can be calculated without
complete knowledge of G(x, x’; r). Using eqn (3.74), the time derivative
of eqn (3.72) is calculated as

—(x(t)x(O)) J' dx j dx'xx’ [;‘ = (kBTZ—G ka)]‘l»‘eq(x'). (3.76)

The right-hand side is rewritten by integral by parts as

° (x(t)x(O)) f dx f dx’ Glp.,q(x')["‘LTa%gr ') ————(xx )]
= —Z' deJ'dx'xx'G(x, X3 1)Weqfx”)
=~ (x(x(O) (.77
where
=tk (3.78)

The initial condition for the differential equation is obtained from

(x(0) = [ @@ ) ='%T. (3.79)

Hence

{(x(1)x(0)) _%sT exp( —t/1). (3.80)

3.5.2 Langevin equation

The same result as eqn (3.80) is obtained from the Langevin equation.
For the potential (eqn (3.71)), the Langevin equation is written as

dx
§q = "l +f(0) (3.81)

with ‘
(@) =0, {fOFC)) =28ksTo(t—1"). (3.82)

To calculate {x(¢)x(0)), we first express x(t) in terms of f(¢'):

x(t)=% f dr’ exp(—(t — 1) Df ). (3.83)
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Hence
(K(B)x(0)) = f dr, [ dt, expl—(t — 1, — )TN F () (1))
-7 j dtlfdrz exp[—(t — 1, — )/ TR Eks T 8(t, ~ 1,)

_2ksT

f de, exp(—(r —28,)/1) = —T exp(—t/t) (3.84)

which agrees with eqn (3.80).

Finally we derive an explicit form of the Green function G(x, x'; ).
Again we use the same argument as used in deriving eqn (3.36). Since
x(#) is a linear combination of f(¢), the distribution of x is Gaussian,
which is generally written as

G{x, x"; ) =[2zB(H)| ™2 exp[—(x;—;i(g)z-] (3.85)
where
A@) = (x()), B(e) = {(x(1) - A(D))*). (3-86)

To calculate these quantities, we solve the Langevin equation under the
initial condition x(0) = x":

x(t) =x" exp(—t/7) +% J'dt' exp(—(t — 'Y T)f(1'). (3.87)

Using eqn (3.82), A(t) and B(f) are calculated from eqns (3.86) and
(3.87):

A(#) =x"exp(—t/7) (3.88)

and

B)=7; [ o [ dty exp(— (= 1+ = ) (00 )

= é Jdtl exp[—2(t —1,)/7] - 28k T

"" —— [1 — exp(—2t/1)). (3.89)
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Hence the Green function is given by

-1/2
2”:3 r (1 —exp(—2t/ r))]

G(x, x';t)=[

k[x — x' exp(—t/7)]?
X exp [ T 2%, T[1 - exp(—2t/ r)]]' (3.90)

Consider the two limiting cases:
(i) When ¢ is small, 1 << 1, G(x, x'; £) is the same as free diffusion:

G(x, x'; t) = (4nDt)™"? exp[ _& 4_Dxt’)2] (3.91)

(1) When ¢ is large, > 1, G(x,x";f) becomes the Boltzmann
distribution,

G(x, x';0) = (k/2nkgT)"? exp[ - (3.92)

2
2T ]

in accordance with the second law of thermodynamics.
Using Mehler’s formula'' for the Hermite polynomial:

i Hp(g)Hp(n) §F = (1 _sz)expl:§2 . (E -_2‘;)2] (393)

p=1 pr' 1
with H,(&) defined by
H, (€)= (~1F exp(&) %exp(—ez), (3.94)

eqn (3.90) can be written in the eigenfunction expansion form:

Gx, x'31) = 3 exp(—A D, IV We)  (3.95)

p=0
where
A, =plT; Yp(x) = (2°p !)'me(x/y), with y= 2k T/k)l’z.
(3.96)

3.6 Interacting Brownian particles

Having seen the basic tools for describing Brownian motion, we now
consider more realistic situations. Suppose that a collection of spherical
Brownian particles, all having equal size, are suspended in a fluid and
interacting with each other. Such systems are often found in colloidal
suspensions.'> As we shall discuss in the next section, the study of this
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system is the basis for the general theory of polymer solutions and
suspensions.

To obtain the Smoluchowski equation for such a system, we first
calculate the mobility matrix. Let R,, R,, ..., Ry={R} be the posi-
tions of the spheres and F,, F, . . . , Fy be the forces acting on them. We
assume that there are no external torques acting on the particles. Then
the velocities of the particles are written as¥

V.= H,."F, (3.97)

which defines the mobility matrix H,,.. (Note that ¥, and F, are vectors
and therefore each component of the mobility matrix H,,, is a tensor.)

In a very dilute suspension, the velocity of a particle is determined only
by the force acting on it, and the mobility matrix becomes

H,, = (3.98)

where ¢ = 6an,a is the friction constant of the particle, and [/ is the unit
tensor (I, = d,5). In general, however, the velocities of particles depend
on the forces acting on their surrounding particles, because the force
acting on a certain particle causes the fluid motion around it and affects
the velocity of the other particles (see Fig.3.6). This interaction,
mediated by the motion of the solvent fluid, is called the hydrodynamic
interaction. As a result of the hydrodynamic interaction, the off-diagonal
components of the mobility matrix become nonzero.

To calculate the particle velocities V, (n=1,2,... N) we have to
know the fluid velocity v (r) created by the external forces acting on the
particles. In the usual condition of Brownian motion, the relevant
hydrodynamic equation of motion is that of the low Reynolds number

¥ This. form of the mobility matrix is correct only for spherical particles. In general, particles
of finite shape have both translational and the rotational degrees of freedom, and the
. 8eneral form of the mobility matrix is written as

V.=2 HID - F,+HIP-N,,
mn=2H$vR;T)'Fm+H(nfnR)'Nm:
m

;he,;,; ©,, Is the angular veIocit; of the particle m, and N, is the external torque acting on
+ 20e coefficients HIT), HU®), etc, depend on both the spatial arrangement of the
particles and their orientation. However, in the case of spherical particles, HZT is
m*'1‘=lo)end¢nt of the orientation, so that if N, =0, the rotational motion need not be
Cconsidered explicitly.



INTERACTING BROWNIAN PARTICLES 67

Fig. 3.6. The hydrodynamic interaction. The force acting on the particle m
creates a velocity field and causes the motion of other particles.

hydrodynamics,™'* which assumes:
(i) The fluid is incompressible

3
o Ve v, =0. (3.99)
(In this book Greek indices a, 8, #, v... are used to indicate the
components of vectors and tensors, and the summation convention is
used over the repeated indices.)
(ii) The inertia force of the fluid is negligibly small, so that if o,4(r)
and g, (r) denote the stress tensor and the external force acting on unit
volume of the fluid, respectively,

3

o, ~ Opg = —8alT). (3.100)

The stress in the fluid is written as

Jvg Ov,
Oup n,( ot ) + PO (3.101)
(P being the pressure). From egns (3.99)-(3.101) it follows that
32 3
a+t—P=-g,. .

Equations (3.99) and (3.102) are called the Stokes approximation, and
are the basis of the hydrodynamic interactions in suspensions and
polymer solutions.
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Let us now calculate the flow field created by the external forces acting
on the particles. First we regard the particles as points, and write g(r) as

g(r)=2 F,5(r—R,), (3.103)
then eqn (3.102) reads

nsVv +VP=-> F, 8(r—R,). (3.104)
Equations (3.99) and (3.104) are easily solved by the use of the Fourier
transform (see Appendix 3.III). The result is
v(r)=2, H(r—R,)F, (3.105)
with "

H(r) = (I + ##) (3.106)

8zn,r
where 7 denotes the unit vector parallel to r. The tensor H{r) is called the
Oseen tensor.

Since the particles move with the same velocity as the fluid, their
velocities are given by

V.=v(R,)=2 HR,-R,)-F,. (3.107)

Thus
H, =HR,—-R,). (3.108)

Unfortunately, eqn (3.108) is not appropriate since H,;, = H(0) is
infinite. This failure comes from the approximation that the particles are
regarded as points. If we start from a collection of particles with finite
size, this difficulty does not arise. Unfortunately, for a collection of
particles with finite sizes the solution of Stokes equation is obtained only
in the form of a perturbation expansion,” ' which is not easy to handle.

A simple approximation commonly adopted in the theory of polymer
solutions is to use #/{ for H,,, i.e.,

!
H, = Z; H,=HR,—-R,), n¥m. (3.109)
With this definition of the mobility matrix, the general form of the
Smoluchowski equation is written as

¥ o B W U
3t 3R, Ho - (k”TaR,,,+aRm ‘p)

This is the basic equation describing the interacting Brownian particles.

(3.110)
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3.7 Microscopic basis of viscoelasticity

3.7.1 Introduction

Colloidal suspensions and polymer solutions have interesting mechanical
properties. In general these materials have both viscosity and elasticity
and hence are called viscoelastic. Colloidal suspensions show curious
nonlinear hysteresis effects called thixotropy, rheopexy, and dilatancy.
These unusual flow behaviours are the central problems of rheology.'”°
A fundamental question in rheology is how those phenomena can be
understood from the microscopic characteristic of the materials, i.e.,
their structure and the type of interaction. In later chapters, we shall
discuss this in detail for polymeric Liquids. In this section, we shall give a
general base for developing microscopic theory for the mechanical
properties of suspensions and polymer solutions.

The theory presented here is based on the classical work of
Kirkwood,”® who summarized the earlier works of Burgers,?’ Kuhn,*
and Kramers® and established how to take Brownian motion into
account, how to include the effect of the macroscopic flow, and how to
calculate the stress tensor.?* Though the original theory of Kirkwood was
for dilute polymer solutions, the theory equally applies to concentrated
polymer solutions and suspensions.

The basis of the Kirkwood theory is to assume that the microscopic
dynamics is described by a system of spherical Brownian particles of
equal size interacting via the potential U({R}) and the hydrodynamic
interaction. Each Brownian particle is called a bead. At first sight this
model may appear to be quite specific, but it actually represents a quite
wide class of systems. For example:

(i) Polymer solutions: A polymer in solution can be modeled as a
collection of beads connected sequentially (see Fig. 3.7a). The connec-

@) o) ©

Fig. 3.7. Systems described by interacting beads. (a) Polymer (the freely jointed

model). (b) Solid particle of an arbitrary shape. In this model, it is convenient to

assume that the inside of the particle is filled with the same fluid as that outside,
as shown in (¢).
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tivity of the chain and the excluded volume interaction are included in
the potential U({R,}).

(ii) Suspensions of solid particles of arbitrary shape. A solid particle in
suspension can be modelled as a collection of beads fixed on the surface
the solid particle (see Fig. 3.7b). In this model, the bead m represents a
discretized surface element of the particle, and when the size of the beads
is taken to be infinitesimal, the formulation becomes equivalent to that
obtained by hydrodynamical considerations.”+

To apply the theory to such general systems, we have to consider a
system with rigid constraints. However, in this section we shall first
consider the case in which there are no rigid constraints, i.e., the force
dU/38R,, is finite and well behaved.

3.7.2 Constitutive equation

The mechanical property of a homogeneous material is expressed by the
constitutive equation which relates the stress tensor g, to the velocity
gradient tensor k,g, Where

B, (r, 1)

3.111
o (3.111)

Ka'ﬁ(r: t) =

and o (r, t) is the macroscopic velocity field.

Generally, both 0,5 and k,s depend on position and time. However, in
considering the constitutive equation, the positional dependence of k,g can
be eliminated because the stress at a certain fluid element depends only
on the previous values of the velocity gradient evaluated at that fluid
element (principle of locality). This is a consequence of the length-scales
of the particles being much smaller than the macroscopic length: although
the stress depends, strictly speaking, not only on x,g but also on its spatial
derivative dk,g/dr,, the effect is of the order of (size of the particle)/
(macroscopic length), which is usually negligibly small. Therefore to
study the constitutive equation, we may assume without loss of generality
that the macroscopic velocity gradient is constant throughout the system,
and that the velocity field is given by

Ba(r, £)= Kap()75. (3.112)

In this case, the stress tensor o,, is independent of position. Such flow is
called homogeneous.

1 In this modelling of solid particles, it is convenient to assume that the frictional elements
are placed only on the surface and that the interior of the particle is filled with fluid of the
same viscosity as that of the outside fluid (see Fig. 3.7c). Provided that the shell undergoes
only translation and rotation, the interior fluid behaves like a solid (the strain rate inside the
fluid is zero). In such a case the stress is zero inside the particle and there is a discontinuity
in the stress at the surface of the particle, i.e., if F is the surface force density and » the unit
vector normal to the surface then o,zn; = F, at the surface.
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The stress tensor 0,5 can be expressed as the sum of an isotropic tensor
50,5 and an anisotropic tensor o'} whose trace is zero:

Onp = 00,5 + 053 (3.113)
with
0=30m, 08=0. (3.114)

In an incompressible fluid for which

a Y — —
—é;:v,,—xaa—O (3115)

the isotropic part is determined by the external conditions and is
irrelevant in the discussion of the constitutive equation. In this book we
shall consider only such fluids, and neglect the difference in the isotropic
part of the stress tensor. Thus two stress tensors 0%y and o\ are
regarded as equal if their difference, 0% — 0, is an isotropic tensor.

3.7.3 The Smoluchowski equation for a system in macroscopic flow

Now our aim is to calculate the stress for given history of macroscopic
velocity gradient. First we consider the form of the Smoluchowski
equation for a given macroscopic velocity field v(r, ) =x(¢) - r. To do
this we have to know the microscopic velocity field v(r,¢). This is
obtained from the conditions: (i) v(r, #) is a solution of eqn (3.104), and
(ii) the average of v(r, ) is the macroscopic field, i.e.,

o(r, )= {v(r, 1)) (3-116)
where (. ..) means the configurational average of the beads,

(..)= j HRVP(R);1). .. (3.117)

Though at first sight it may seem difficult to find the velocity field
v(r, t), the answer is simple:

v(r,t)=x(t)-r+ > H(r—-R,)F,. (3.118)

For this flow, the first condition is obviously satisfied. That the second
condition is satisfied is seen by the symmetry argument: in the homoge-
neous flow, the average

o'(r, )= @ H(r-R,)- F,,,> (3.119)
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must be a constant vector which can depend only on the tensor k.1 Since
one cannot construct a vector from a single tensor x, v'(r, t) must be

zero.i
Given the microscopic velocity field v (r, ¢), the velocity of the beads is
immediately obtained:

V,=v(R.;1)=k(t)-R,,+ >, H,, -F, (3.120)

so that the Smoluchowski equation becomes
v 3U) iy 3

+
3R, YR 23R,

- k(t) - R,V.

(3.121)

This equation describes the change in the distribution function of a
system under macroscopic velocity gradient.

3 3
Sy -H,,o(kT
a:q' ,;,,SR,,, " B

3.7.4 Expression for the stress tensor

Next we consider how to calculate the stress tensor, say the component
Ou:(@=2x,y, z). To this end we consider a region of volume V in the

I nQ/// \ O ///
L

z

t
JT T >

X

Fig. 3.8. Microscopic definition of the stress tensor. The stress component

0..(@=x,v,z) is the @ component of the force (per area) that the material

above the plane (denoted by the dashed line) exerts on the material below the

plane. The force § consists of two parts §© and §®. §© is the force acting

through the solvent at the plane, and §* is the sum of the forces that the upper
beads exert on the lower beads via a potential.

1 Strictly speaking a more careful analysis is needed to justify this argument since the sum in
eqn (3.119) is ill converged, and depends on the shape of the outer boundary. However, as
in the case of dieletrics, the contribution from the outer boundary can be included in the
imposed field x(¢), so that in practice the contribution from the outer boundary can be
neglected. (See the discussion in ref. 26.)

1 If there is an external force field (such as gravitational force) ©’(r, f) does not vanish. In
such a case, the problem must be treated by a multi-fluid model,”” which is not considered
in this book.
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homogenous flow, and divide it by a hypothetical plane which is
perpendicular to the z-axis (see Fig. 3.8). By the definition of the stress
tensor, o,, is given by the force S, which the upper part exerts on the
lower part through the plane:

Oue = (S, }IA (3.122)

where A is the area of the plane.
Now S, consists of two parts, the force S which acts through the
solvent fluid and the force S%’ which acts directly between the beads. The

former is written as

59 = [ arl

re

v, N du,
or, aJr,
where h is the position of the plane defined in Fig. 3.8, and the integral is
carried out in the region V. The force S® is given by the force F,,, which
the bead n exerts on the bead m:t

) + Pa,,]a(r, —h),  (3123)

SO(h) = D, Fruna®(h = R, )O(R,., — h), (3.124)
where
1 for x>0,
O()= {0 for x<0. (3.125)

The two © functions in eqn (3.124) restrict the bead » to the upper part
and the bead m to the lower part.

In the homogeneous flow, the average (S,(%)) is independent of A, so
that eqn (3.122) can be written as

oo =3 [ S0 = [an(s0 5P G120

The integral for S% is

x¢ = [an [ a2 G +3 (02)) + (P)8. |00~ )

ar,
reVv z

- [ an(E @+ 2 w))+ pre.] (127

rev

1 Note that here the size of the beads is taken to be infinitely small. Since rigid bodies of
finite size are cxpresscd.t.)y the model shown in Fig. 3.7b, this does not impose any
limitation on the applicability of the present formulation.
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By eqgn (3.116),
XO = J [ (a (Kew) + (K,“ru))+(P)6a,]

reV

= V[N(Ka: + K.0) + {P)0,.). (3.128)

The integral for S% is rewritten as

X(P)—< j dhs<P>(h)> <,,,,,,, f dh®(h — R,..)O(R,; — )>

_ <m2 Epo(R,. — R,.)OR,. — R,,,z)>. (3.129)

3xchanging m and n, and using Newton’s third law, F,,, = —F,,,, we have
X9 = (33 (B (Rox = Rne)ORoe = Ry)
+ Eya (R~ Ro)O(Re — R,2)])
= (82 Fra(Res = R O(Re — R) + O(Roe = Ry)])

= (33 Foa Rz ~ R} (3.130

et F,, be the sum of the nonhydrodynamic forces acting on the bead m:
E,=>.F,. ~ (3.131)

Chen eqn (3.130) is rewritten as
XP = (43 FaRps +33 FuveR,.)
- —<2 FmR,,,,>. (3.132)

‘rom eqns (3.126), (3.128), and (3.132), we finally obtain the stress
ensor

1
Oug = ns(xafﬂ + Kﬂa') + (P)aaﬂ - ;2 (FmaRmﬂ)' (3133)

[he first term in eqn (3.133) represents the stress in the absence of the
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beads, and the last term,

o) = —%% <FmR,,,,>, (3.134)

denotes the extra stress due to the beads.
It is important to notice that F,, is given by

o
F, = —‘é'i;(kBTlnlp+ U) (3.135)

and includes the thermodynamic force 3kzT In W/3R,,. The necessity of
such a term can be understood by studying a special situation. Consider
for example that the suspension is in equilibrium under the gravitational
field U= —gz. If the term k37 3 1In W/3R,, is not included, the stress
tensor is not isotropic, which contradicts the condition that the stress
must be isotropic in a liquid in equilibrium.

Equations (3.121) and (3.133) together may be regarded as a constitu-
tive equation: for a given macroscopic velocity gradient k,g(f), the
distribution function ¥ is obtained from eqn (3.121) and the stress is
calculated using eqn (3.133).

3.7.5 Principle of virtual work

The stress formula (3.134) can be put in the form equivalent to the
principle of virtual work.® Consider a virtual deformation which displaces
the point r, on the material to r, + 8&,57s in a very short time d¢. In the
limit of &¢— 0, the velocity gradient x,sz = 0¢&,5/0t becomes very large,
so that the time evolution of W in the time interval J¢ is dominated by
Kafﬁ)'}-

oW 2

§=—m m‘“'qu’. (3136)

Hence the change in W by the hypothetical deformation is

W 3
== —. . . 3.137
8W=—"0t Em', R (8&: R,,¥) (3.137)

Let &/ be the dynamical free energy of the system:
A= Id{R}W(kBTm ¥ + U)

It can be shown that the stress 0¥ due to the Brownian particles is

1 This statement is not true if there are rigid constraints which produce infinite forces. See
the discussion in the next section.



76 BROWNIAN MOTION

related to the change in the dynamical free energy by
0 = 08)de,5V. (3.138)
The proof is straightforward. The change in the dynamical free energy is

5 = f AR} (kzTOW In ¥ + ky TOW + USW). (3.139)

Substituting eqn (3.137) and using the integration by parts, we have

5 =fd{R}2 "aRa

(8€ap R W) (kT In W + kT + U)

S

3R (ksT W +0)

= f AR}, 86,5Rs¥

= ~ 0848, (RmpFrma)

= 8,508V (3.140)
Equation (3.138) represents the principle of virtual work.

3.8 Systems with rigid constraints

3.8.1 [Introduction

We now consider the case where the beads are subject to rigid
constraints. This is necessary to deal with the problems of suspensions of
a rigid body, or polymers with rigid constraints (such as the rodlike
polymer, or the freely jointed model), but the reader who is interested
only in flexible polymers can omit this section.

Here we shall consider only the kolonomic constraintst which can be
expressed as equations connecting the coordinates of the beads:

C,({R})=0, p=1,2,...,N. (3.141)

Examples of systems which have such constraints are:
(i) the freely jointed model (Fig. 3.72), in which the beads are
successively connected at constant distance b, so that

(R,—R,_—b*=0, n=1,2...,N. (3.142)

(ii) the rigid body model (Fig.3.7b), in which the mutual distance
between the beads is fixed.

When the constraints are introduced, the force F,, is no longer a known
function of {R} and must be determined by the equation of motion. This

Tl'l‘hc topological constraints that the chains cannot cross each other do not belong to this
class.
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situation is familiar in classical mechanics,”® where the forces are
determined using the condition that the solution of the equation of
motion must satisfy the constraints. The same rule applies to the present
system except that in our problem, the equation of motion is not
Newton’s equation, but the hydrodynamic relation

V,.,=K-R,+ > H,. -F,. (3.143)

From a practical viewpoint, there are two ways of doing this.

One is to introduce generalized coordinates which are independent of
each other, and specify the configuration of the beads uniquely.” This
method is suitable when the positions of the beads are expressed
explicitly as a function of such coordinates. For example, rigid body
problems are conveniently handled by this method. In this example, the
generalized coordinates will stand for the three components of the
position vector of the centre of mass, and the three Euler angles
specifying the orientation of the rigid body. However it is impractical to
apply this method to the freely jointed model.

Another method is to use the Lagrangian multipliers for the con-
straints. This method is complementary to the first, and indeed has been
successfully used for the freely jointed model (and semiflexible polymer
models™).

Here we shall describe the formal part of the methods,”° leaving the
detail of calculation to the literature.**>*

3.8.2 The method of generalized coordinates

Let {Q}=0,,0-,..., Qn, be the set of generalized coordinates. The
position R,, is expressed as a function of {Q} as

R,=R,({0), m=12,...,N. (3.144)

If the velocity of the generalized coordinate is V,, the velocity of the
particle is given as

M 3
g 3 Q,, (3.145)

In this section we shall employ the summation convention, and write eqn
(3.145) as

R,
3¢,

To obtain F,,, we use the principle of virtual work.?® Let us consider

V.=

V,. (3.146)
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the work necessary to change Q, by 6Q,, which is

S(U+kpTInW)= [ (U+kTn W)]ag,, (3.147)

3Q.

Alternatively, the work can also be calculated using the force F,, and the
displacement R, caused by the change in Q,, i.e.

O(U+kzgThW)=—F, - 6R,, (3.148)
where
R
OR,. =—T"80,. .
30. 60 (3.149)
From eqns (3.147)—(3.149) we have
oR,, 3
E, - aQa*—aQa (kT In ¥ + V). (3.150)

Equations (3.143), (3.145), and (3.150) determine V, and F,,.
To obtain F,, and V, explicitly, we first solve eqn (3.143) for F,:

F,=(H ")y (Va—K-R,)

R,
— (!
(HY,.. - (aQa V.—x-R ) (3.151)
where (H™),,, is the inverse of H,,,:
(H™ ) * Hpe = 8. (3.152)
Substituting this into eqn (3.150), we have
3R, .. . [aR,,, -
50 (H D | 507 Vo K R,,,] aQa(U+kBTln ). (3.153)
Putting
R, SR,
h—l - -1
=507 (H Do - 55, (3.154)
define
F® = aQa(U+kBTln W), (3.155)
and
3
ViV =p R, HY,.-x-R,, (3.156)

“3Q,
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we can rewrite eqn (3.153) as
(h Das(Vy = VE)=FP (3.157)
which can be solved using #,,, the inverse of (h™"),,, giving
Vo=V + b FEO
3

By ——(U+ksTIn®)+ VY, (3.158)
30
Hence
F,=(H™) .(aR R F?+—— V) — xR ) (3.159)
" " \eQ, Qa

In the generalized coordinate space, the conservation equation is
written as™ :

v
ot Z 130,
where g is the determinant of the matrix g,, defined by

{vg A (3.160)

SR OR,
=— 3.161
8 =30, 30, G-16D
Thus the diffusion equation is obtained ast

a\p 1 [ ( v U
kT —+
3 Vg aQa‘/g “\"2% 50, 30,

This equation was first given by Kirkwood.”

qx) - VS,")‘P]. (3.162)

3.8.3 The method of Lagrangian multipliers
The constraints can be treated by the alternative method of Lagrangian
multipliers.”® Here {R} are regarded as independent variables, and the
constraining forces are explicitly added to the right-hand side of eqn
(3.135): _9_

. = aR — (kgTIn¥P+U)+4, 3R, (3.163)

t The factor Vg appears naturally as a result of the coordinate transformation, but it is
unncccssay from the viewpoint of the general theory of Brownian motion. Indeed, in terms
of ¥ gand U=U - kBT In Vg, eqn (3.162) can be written in the form of eqn (3.21)

¥

o _° 7Y 3_0 g ]
which includes no Vg factor. Notice that the theory here can be presented without using the

Riemannian geometry.
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The unknown parameters A4, are chosen such that the velocity V,
determined by eqn (3.143) satisfies.

ac,

R Vm=0. (3.164)

Using eqns (3.143), (3.163), and (3.164),

oC, a G, .
— -1 q. . —_— — -1

(3.165)

where (h7"),, is the inverse of the matrix

3G, ac,

by, = R, H, R (3.166)

The Smoluchowski equation is obtained if eqn (3.163) is substituted into
the continuity equation:

ow
= ——-(V,,.qr)
8 8C, .., aC, )
% . H kT + U
a B IIJ(aR 3R, (R~ Doa g, M og /KeTIn )
a ac,, .. aC, )
__8 3.
e ( Ry = o+ 52 (") S KR (3.167)

3.8.4 Elastic stress and viscous stress

If the distribution function is obtained from eqns (3.162) or (3.167), the
stress can be calculated from eqn (3.134) in which F,, is now given by
either eqn (3.159) or (3.163). In either expression, the force F,, consists
of two terms, one independent of x and the other proportional to x:

= FE+ Eppapypy- (3.168)

For example in the generalized coordinate representation, eqns (3.159),
(3.155), and (3.156) give

ths)z (th)m‘n )

a 0. hch(bE)

cR b2
=—(H! . = B .
(H™ ) pn 30, o 50, (U + k5T In¥) (3.169)
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and
R,

3Q.

oR,, OR

=(H Y * ( Pop——

aQa aQb

The force F& represents the force due to the potential, and E,,:K

represents the effect of the constraining force. Hence the excess stress
due to the Brownian particles is generally written as

s,,,:x=(H-1),,,,,-( ny™) _ xR )

“(HY),; xR —K- R,,). (3.170)

6®) = 65 + o) (3.171)
where

o= 2 (FDRo), @.17)

oy = —%, E=1 (EmausRong ) Koy ()- (3.173)

We shall call o the elastic stress and o the viscous stress. The
viscous stress is proportional to the current velocity gradient x(f) and can
be written as

59(0) = NSk 0), (3.174)

while the elastic stress does not include x(¢) explicitly.

Phenomenologically, the viscous stress is the stress which vanishes
instantaneously when the flow is stopped. On the other hand the elastic
stress does not vanish until the system is in equilibrium. The elastic stress
is dominant in concentrated polymer solutions, while viscous stress often
dominates in the suspensions of larger particles for which the Brownian
motion is not effective. Whichever stress dominates, the rheological
properties can be quite complex since both ¢{ and 7%, are functions
of the configuration of the beads and therefore depend on the previous
values of the velocity gradient. Note that the viscous stress o only
appears in the system with rigid constraints.{

The actual formula for the stress tensor is complicated. However, a
neat expression is obtained in the form of the principle of virtual work.
By a straightforward calculation, it can be shown®

+ It must be mentioned that the distinction between the elastic stress and the viscous stress
is a matter of time-scale. The elastic stress which has very short relaxation times, cannot be
distinguished from the viscous stress. A discussion from a phenomenological viewpoint is
given by J. D. Goddard, J. Non-Newtonian Fluid Mech. 14, 41 (1984).
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(i) The viscous stress 0%y or the coefficient n%g,, are related to the
energy dissipation function

WV =2 (Vm—K-R,)- (H ") (V,—K-R,) (3.175)
* (Mini W) = {2, KapKur V (3.176)

Note that Mini W does not vanish since ¥, must satisfy eqn (3.145) (or
eqn (3.164)) for the system with constraints.

(ii)) The elastic stress is related to the change in the dynamical free
energy & caused by the instantaneous deformation d¢,5 = k,p0¢:

= AE
where 8 = 0 HdepV, (3.177)
oA = I AR} ksTOY In ¥ + kzTOW + UdY). (3.178)
Here W is given by
3
W=——- .
3R (V,.00F) (3.179)

where V,, is the velocity which minimizes eqn (3.175).

3.8.5 Variational formulation

The theory described above can be formulated in the form of a
variational principle® which is similar to the Lagrangian formulation of
classical mechanics. The advantage of this formulation is that it is
independent of the coordinate system, and allows a great flexibility in
choosing coordinates.

Let us regard V,, as a function of {R}, and consider the functional
defined by

K=iW+4 (3.180)
with
W= [dRIS, (¥~ K- Rp) - (H )y (V= K- R,) (3.181)
and
= j AR} (ks T In W + ky TV + WU), (3.182)
where W is defined by
¥=-3-"2 .y w) (3.183)
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It is then shown that:
(i) The minimization of K for all variations of V,, subject to the
constraints (3.145) (or (3.164)) determines the time evolution of ¥ to be

a% W({R}; ) =P({R)}). (3.184)

(if) The stress is given by

_3Mini K

Gop = + 'I:(Kaﬁ + Kﬂa) + Paaﬁ (3185)

aKaﬁ

Some applications of this principle are given in ref. 6.

In closing this section it is worthwhile to stress again that no condition
has been mposed on the concentration of the particles. Therefore the
theory will apply to concentrated suspensions as well as dilute
suspensions.

Appendix 3.1 Eigenfunctions of the Smoluchowski equations

In this Appendix we discuss the eigenfunction expansion of the Smol-
uchowski equation (3.21). For the sake of simplicity, we represent the set

of wvariables {x}=(x;,...,xy) by x, and write the Smoluchowski
equation as

v

8_t= —T(x)¥(x, 1) (3.1.1)
where T is a linear differential operator:

3 ¥ U
I'(x)¥=— Lm( — —-) I
(x) ,,,zma - ""Tax,,,”'ax,,, (3.1.2)

The conjugate of the operator I'(x) is denoted by I'"(x): for any W¥(x)
and ®(x)

j W) (T()D(x)) = f de (T (X)W () (). (3.13)
From eqns (3.1.2) and (3.1.3), I'"(x) is obtained as
r(x)=->, (k,,ra%—gz)l,mf.

Let W,(x) be the right-hand eigenfunctions and ,(x) be the left-hand
eigenfunctions:

(3.1.4)

Fr)¥,(x) =2,%,(x) (3.1.5)
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and _
I (x)y,(x) = 2,9, (x). (3.1.6)
The eigenfunctions are chosen to be orthonormal so that

| @@, @y, = 8,0, (3.17)

It is easy to prove by direct substitution that the right-hand and left-hand
eigenfunctions are related by

Wp(x) = Weqg(x) ¥ (x) (3.1.8)
Hence eqn (3.1.7) can be written as
f AW ¥, ¥e = (Vo ¥ )eq = Opq (3.1.9)

where (.. .)., denotes the equilibrium average.

The equilibrium distribution function ¥, is an eigenfunction with
eigenvalue 0, which will be denoted by the suffix p =0, so that y,=1.
All the other eigenvalues are positive. To show this we multiply both
sides of eqn (3.1.5) by ¥,(x) and integrate over x:

Iy | 0¥} =[xy, Dy, (3.1.10)

Using eqn (3.1.2) and the integral by parts, the right-hand side is
rewritten as

rhs=kBTIdx2 L,,,,,‘Peq%g—xwe (3.L11)

which is positive due to eqn (3.18). Therefore all A, are positive except
Ay=0.

Now the distribution function W(x,#) can be expanded by the
eigenfunctions as

Y(x, 1) =2, a,()¢,(x)¥eqx) (3.112)
where by eqn (3.1.9)

a,(t)= f dxy, (x)¥(x, ?). (3.1.13)

Since yo =1, and W(x, ¢) satisfies the normalization condition,
ao=1. (3.1.14)
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From eqns (3.1.1), (3.1.5), and (3.1.12), a,(¢) satisfies

d% () = —4,a,(t) (3.1.15)
which gives
a,(t) = a,(0)exp(—A,1). (3.1.16)
Thus
W(x, £) = 2. a,(0)exp(— 4,0, (x)Weq (%) (3.1.17)

= Weq() + 2, ,(0)exp(— A1)y, (1) Peq(x)-  (3.118)

After a long time, the underlined terms become very small, and W(x, ¢)
becomes the equilibrium distribution function.

As a special case of formula (3.1.18), the Green function G(x, x'; ¢)
which satisfies the initial condition (3.46) is obtained as

G, 13 1) = 3, exp(—A 0¥, ()Y, Weo0). (3119

Appendix 3.1 Relationship between the Langevin equation and the
Smoluchowski equation

Here, we shall show that the probability distribution of the solution of
the Langevin equation (3.27) satisfies the Smoluchowski equation (3.16).
First we consider the case when { is independent of x. We write the
Langevin equation (3.27) as

dx
- Vix) + og(?) (3.11.1)
where
13U ksT\'?
Vx)= _Z_"_”aix)’ o= (— = D", (3.11.2)

and g(¢) is a random variable satisfying

(8(1)) =0, (g(r)g(t")) =28(t—1'). (3.11.3)

Suppose that the particle was at x at time ¢. The displacement & of the
particle in a very short time At is easily obtained from eqn (3.11.1) since
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V(x) can be regarded as constant in a short time interval:

4+ As

E§=Vx)At+o j dr,g(t,). (3.11.4)

Since & is a linear combination of the Gaussian random variable g(¢), its
probability distribution ¢(&, Af;x) is also Gaussian, the moments of
which are obtained from eqn (3.I1.3) and (3.11.4):

(E) =V(x)As, (3.11.5)

t+At t+ At

(E—(EN) =0 [ dn | dilele)g(e)) =20%ar=2DAr (31L6)

Hence

NESG]

(&, At;x) = (4aDAL) 2 exp[ iDAr

(3.IL7)

If the probability that the particle is at x at time ¢ is W(x, ¢), then the
probability that it is at x at time 7 + Az is given by

W(x, t + Af) = f d& [ dr'8(x — x' — E)P(E, At: x"Y¥(x', 1)

(E-Vx-§ay
4D At

]‘P(x -£,0).
(3.11.8)

_ f dE(4nD A2 exp[—

Since the integrand has a sharp peak at & =0, the integral is evaluated by
expanding V(x — &) and W(x — &, ¢) with respect to &:

((1 + %, At)§ - VAt)2

4D At

W(x,  + Af) = f dE(nD AL exp| —

X (1 _ 5';7* %gzaixz)lp(x, ).

Neglecting the terms of order A¢* and higher, we get

av BN EaY
W(x, t + Af) = (1 ™ At)‘l’ — AV —+DAISS.  (3IL9)
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Collecting terms of order At, we get

ow¥ d Iy W 19 /38U
E— ——a(V(x)II‘(x, t)) +D Py =D 32 +-"'—( )

(3.11.10)

This agrees with eqn (3.16)
Next we consider the case when £ depends on x. The Langevin

equation (3.38) gives

j—: =V(x)+ a(x)g(®) + o(x) d_a, (3.11.11)
where o(x)> = kzT/&(x). Let X(¢) be defined by
x{2)
1
X(H)= ’ 3.11.12
(0= | & (I1.12)
The Langevin equation for X is then obtained from eqn (3.11.11)
dX
- V(X)+g(2) (3.11.13)
with
V do
1 =—+4— Al
(X)=—+5- (3.11.14)

Equation (3.I1.13) is the Langevin equation studied earlier. Thus, the
probability distribution function for X satisfies

oW 3 ¥ _
= (ax_ V\I’) (3.1L.15)
From eqn (3.I1.12), it follows that
W(X, 1) = o(x)¥(x, 1) (3.11.16)
and
P _.2
X %o (3.11.17)

From eqns (3.11.15)-(3.11.17), we can show that W satisfies

W 3 ,3¥ 31(, ,3¥ 3
ERE (" ax V‘p) ¢ (kB R 35) (3-11.18)

which is the Smoluchowski equation.
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Appendix 3.III The Oseen tensor

Defining the Fourier transform as

v,=%,fmv(r)e“". . (.IIL1)
we can rewrite eqns (3.102) and (3.99) as
—nkv, — kP, = —g,, k-v,=0, (3.111.2)
which gives
1 -
= (1-kk)- g, (3.11L.3)
where & indicates a unit vector in the direction of k. Hence
v(r)= j ar'H(r — 1) - g(r") (3.11L4)
where
H(r) = — f dk—— (1 — kR)exp(—ik - r) (3.1IL5)
)=y | ¥ nwe *P ' -

Since the tensor H(r) depends on the vector r only, it can be written in
terms of the scalars A and B and the unit vector 7 parallel to r, as

Haﬁ(r) = Aaaﬂ . Bfa,fﬁ. (3. III.6)
The scalars A and B are determined from the two equations
I'L;mf =34 + B, Haﬁfafﬁ =A+ B, (3.111.7)
i.e.,
34+ B=—1 Jdk 2 exp(—ik - r) 31118
(2:’!')3 nsk2 exp( r ( Rty )
and -
1 1— (k-7
A = —ik -
+B=rs j k= "5 exp(=ik - 1) (3.11L.9)

The integrals are easily evaluated by introducing the coordinates ¢ =k - 7
and £ = |k| |r| to give

2 TdE_ | .1 T sinE
3A+B—(2x)3ln,r2n£dtem(_1§t)—Jrzr},r.([dg E
1

=Sy (3.111.10)
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and
1
A+B= (23)3 j 27 I dr(1 — P)exp(—ikr)
3\ sin& 1
- ZJrzmr ! dg(l N 352) e dmpy  OTHD
From eqns (3.111.10) and (3.II1.11), A and B are obtained as
1
A=B= S (3.111.12)
Hence
1
H(r)= JIIL1
(r) Sy (3.I11.13)
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DYNAMICS OF FLEXIBLE POLYMERS IN
DILUTE SOLUTION

4.1 The Rouse model

4.1.1. Dynamics of a polymer with localized interaction

Having seen the general background of Brownian motion, we shall now
discuss the dynamics of a polymer in solution. As we have seen in
Chapter 2 the static properties of a polymer can be represented by a set
of beads connected along a chain. It is natural to model the dynamics of
the polymer by the Brownian motion of such beads. Such a model was
first proposed by Rouse' and has been the basis of the dynamics of dilute
polymer solutions.

Let (R, R,, ..., Ry)={R,} be the positions of the beads (see Fig.
4.1a). The equation of motion of the beads is described by either the
Smoluchowski equation (see egn (3.21) or (3.110)).

[ ¥ au]

5 8R k”TE&_ R

or the Langevin equation (see eqn (3.39))

3

—R,(t) = . 3 — :

atRn( ) ;n: Hnm ( aR +fm(t)) + kBT 2 aR ”lm (4 2)
In the Rouse model, the excluded volume interaction and the

hydrodynamic interaction are disregarded and the mobility tensor and the

interaction potential are written as

(4.1)

H.. =é - (4.3)
and

,.% (R, — R, 4.4
with

k= 3’;’;T. @.5)

In this model the Langevin equation (4.2) becomes a linear equation for
R,. For internal beads (n =2,3,... ,N—1),

dR,

dt

n+i " Rn—l) +.t;l (46)
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(@
Fig. 4.1. (a) Rouse model and (b) local jump model.

For the end beads (» =1 and N)

dR dR
C—dt‘l= —k(R,— R;) + 4, _dtl= —k(Ry—Ry_1)+ fyv. (4.7)
The distribution of the random force f, is Gaussian, characterized by the

moments given by eqns (3.40) and (3.41):

(H()) =0,
(Fra(OVfonp (t")) = 2Lk 5 TOpmBogb(t = 1'). (4.8)

As in the case of the Gaussian chain, the suffix n» in the Rouse model
can be regarded as a continuous variable. In the continuous limit, eqn
(4.6) is rewritten as (see the transformation rule given in Table 2.1,
Section 2.2)

3R, , 'R,
£ ar =k I’ + /. 4.9)

To rewrite eqn (4.7) in the continuous limit, we note that eqn (4.7) is
included in the general equation (4.6) if the hypothetical beads R, and
Ry, are defined as

Ro=R,, Ry =Ry (4- 10)
which become, in the continuous limit,
°R, R
=, L ={. .
on | o n |n 0 (4.11)

Also, the moments of the random forces are now given as

(L) =0,
(Faa()frmp(t')) = 2LkpTO(n — m)Bupd(t — t'). (4.12)
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Equations (4.9), (4.11), and (4.12) define the continuous Rouse model.

The results of the discrete model and the continuous model agree with
each other for properties on a long time-scale, but do not for short times.
The discrepancy, however, has no serious physical significance since the
description of the polymer by discretized beads is an artefact, and the
results which depend on the discrete nature of the beads have no validity.

It should be emphasized that the essence of the Rouse model is in the
universal nature of the modelling of the dynamics of a connected object.
The central assumption in the Rouse model is that the dynamics is
governed by the interactions localized along the chain. In fact, if one
assumes a linear Langevin equation for R, with localized interaction, one
ends up with the Rouse model in the long time-scale behaviour. To see
this, consider the general form of the linearized Langevin equation

dR,
&= 2 ARy + 8, (4.13)

where A4, 1s a constant matrix representing the interaction among the
beads, and g, is a random force. Since the system is homogeneous, 4,
depends only on n — m, so that eqn (4.13) can be written as

dR,
o > ARy im +8n (4.14)

with A, = A, ,.,.». In the long time-scale motion, R,, varies slowly with n,
which allows R, ., to be expanded with respect to m, giving

3 &
= _— 1 2—""—
%A,,,R,,m §A,,,(R,,+mann,,+zm aan"+"')
3 &
= aoR,, +a,aR,, +a28_r12R" 4o (4.15)
where
4= 2, An @= D, mA,, a2=-21- > m?4,. (4.16)

The assumption of local interaction guarantees that these sums converge
to finite values. The coefficient a, must vanish since the equation must be
invariant under a spatial translation (R, — R, + r), and a, vanishes since
A,, is an even function of m (because the polymer cannot distinguish
head and tail). Therefore, the asymptotic behaviour of eqn (4.14) is given
by

3 3
aRn =a, 5n—2R,, -+ g,,(t), (4 17)

which is equivalent to eqn (4.9).
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The Rouse model displays the general features of any model which
assumes local interactions. One can conceive of other dynamical
models.>® For example, one can start from the freely jointed chain, and
simulate its dynamics by allowing the local jump process depicted in Fig.
4.1b. This model can be shown to give the same results as the Rouse
model for slow modes (see Appendix 4.I). It is generally believed® that
the Rouse model represents the long time-scale behaviour of the ‘local
jump’ model in the same way as the Gaussian chain represents the large
length-scale properties of a polymer which has only short range
interaction.}

4.1.2 Normal coordinates

Let us now study the consequence of the Rouse model. Equation (4.9)
represents a Brownian motion of coupled oscillators. A standard way of
treating such a system is to find the normal coordinates, each capable of
independent motion. It is shown in Appendix 4.II, that in terms of the
coordinates X, defined by

N
1
X, = f dn cos(’ﬂ’)k,,(:) with p=0,1,2,..., (418
N/ N
eqn (4.9) can be rewritten as
2
b5 X0 = —hXo +1 (4.19)
where
§o=N{ and {,=2N{ for p=1,2,... (4.20)
6ﬂ2kBT 2

k, = 2mw*kp*/N =

sz p for p =09 19 2; .« e (4.21)

and the f,’s are the random forces which satisfy

(fra) =0, (foa(Ofap(t')) =28,,0,C,kaT(t —1"). (4.22)

Since the random forces are independent of each other, the motions of
the X,’s are also independent of each other. Thus the motion of the
polymer is decomposed into independent modes.

The time correlation functions of the normal coordinates can be
calculated immediately from eqn (4.19) by using the results of Section

T However, this statement is a conjecture. Usually the dynamics of the local jump model
becomes a nonlinear equation for R,, so that the proof given above does not apply to the
general local jump model. In fact a counter example was given by Hilhorst and Deutch.”
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3.5.Forp>0
(X,a(1)X,5(0)) =6,.5 ksT / 4.23
per qp — YpqYap kp exp(-t tp) ( . )
where
; T, = T,/p? (4.24)
an
b N
N T 3%k T (4.25)
On the other hand for p =0
2kpT 2ksT
((Koa(t) = Xoa () (Xop (1) = Xap (0))) = g = =t = b 1. (4:26)
The inverse transform of eqn (4.18) is
R=X+23 X, oos(p;n) (4.27)

p=1

Let us now consider the physical significance of the normal coordin-
ates. The coordinate X, represents the position of the centre of mass

RG-—fan =X, (4.28)

Thus the mean square displacement of R is calculated from eqn (4.26)
as

(R~ Ro@P) = 5 (X))~ XoaOP) =6 725 1. (429

o=xy,z

The self diffusion constant of the centre of mass is defined by
1
Dg =lim = ((Rs(t) — Rs(0))). (4.30)

From eqns (4.29) and (4.30)

kT

D.=-2_
GNC

(4.31)

The normal coordinate X, with p > 0 represents the internal conforma-
tion of the polymer. Consider for example the end-to-end vector

P(t) =R\(t) — Ro(t) (4.32)
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which is expressed by X, as
P)=-4 2> X,(. (4.33)

p:odd integer

The time correlation function (P(¢) - P(0)) is calculated from eqns (4.23)
and (4.33) as

(P() - P(0)) =16 %d (X,(9) - X,(0)) (4.34)

—16 3 3kgT

p:odd kp

exp(—t/t,)

N S S

2
p=13,..Pp Tt

exp(~1p?/7y). (4.35)

Equation (4.35) indicates that the motion of the end-to-end vector is
mainly governed by the first mode X;. In general, X, represents the local
motion of the chain which includes N/p segments and corresponds to the
motion with the length-scale of the order (Nb%/p)"2,

The rotational relaxation time 7, of a polymer can be defined by the
longest relaxation time of the correlation function (P(t) - P(0)):t

(P(t) - P(0)) = exp(~t/z,) for t=r,. (4.36)
From eqn (4.35) we see that

(4.37)

Since N is proportional to the molecular weight M, eqns (4.31) and
(4.37) indicate that D and 7, depend on the molecular weight M as

DsxM™, 1,xM> (4.38)

This prediction is not consistent with experimental results, which, in ©
conditions, are summarized as

Dgx M™% 1, M32 (4.39)

This failure comes from the neglect of the hydrodynamic interaction,
which will be discussed in the next section. Because of this failure the
Rouse model is now regarded as inappropriate as a model in dilute
solution. However, the model is conceptually quite important, and also it
has turned out that it is a useful model in the dynamics of polymers in
melts, which will be discussed in later chapters.

t It has been shown®” that the most probable shape of the Gaussian chain is not spherical
but an ellipsoid, the long axis being, on average, parallel to the end-to-end vegtor. Thus it is
possible to talk about ‘rotational motion’ even for flexible polymers.
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4.2 The Zimm model

4.2.1 Zimm model in © conditions

To describe the dynamics of polymers in dilute solution, we have to take
into account the hydrodynamic interaction, which is expressed by the
mobility matrix calculated in Chapter 3,

H.=1/§
1 s 2
H, = m [r,,,,,r,,,,, +1] for n + m (4.40)

where r,,, =R, — R,, and f,,, is the unit vector in the direction of r,,,. For
the tensor eqn (4.40), it can be shown that

o
a—R; *H,, =0. (4.41)
Thus the Langevin equation (4.2) becomes
d U )
—R, = | == . 4.4
iR = 2 Hon (=3 10 (4.42)

In particular, for the © condition, eqns (4.4) and (4.42) give (in the
continuous limit)
e
ot

2

5
R,=3 Hn- (k o Rt f,,,(:)) . (4.43)

This model was first presented by Zimm.'

Since H,,, is a nonlinear function of R, — R,,, eqn (4.43) is quite
difficult to handle. To simplify the analysis, Zimm'® introduced the
preaveraging approximation, which replaces H,,, by its average,

Hun > (o) = [ (R, H B (R}, 0. (4.4

If we are considering problems near equilibrium, which is the case in the
subsequent part of this chapter, we may use the equilibrium distribution
function ¥.,({R,}) in the average of eqn (4.44),

Hun—> (Ho)eo = [ (R Mo W ((R.)). (4.45)

Since the distribution of #,,, is independent of |r,.|, (M), is Written as
1 1 .

(’tum)eq ﬁ <I;n:l>eq(rnmr”m + ’)eq. (446)
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Using
(Bam)en=3 (4.47)
we have
(Huneq = o () (4.48)
“ 6, \|R, ~ R/ eq )

In the © condition, the distribution of R, — R,, is Gaussian with the
variance |n — m/| b?; hence

( 3 )3’2 ( 32 ) I
== 2 ——
(Hum)eq !:dr41tr (ZJr |n — m| b® P\ 73 In —m| b%/ 6n,r
_ ]
(67 |n —m|)"*n,b

=h(n - m)l. (4.49)

Thus in the preaveraging approximation, eqn (4.43) becomes a linear
equation for R,

SR =S k- m)(k i Ru)+u) . (450

At first sight this approximation may appear quite crude. However, it
has been shown that the results of this approximation are not very
different from those of more sophisticated calculations which will be
described later.

Note that since h(n —m) decreases quite slowly (A(n—m)x(|n -
m|)~"?), the moment a, of the interaction matrix A,,, in eqn (4.16) does
not converge. Thus in the Zimm model the interaction among the
segments is not localized. This gives the qualitative difference between
the Rouse model and the Zimm model.

To analyse eqn (4.50) we rewrite it in terms of the Rouse normal
coordinates X, defined by eqn (4.18):

d
79? (1) = 2 hpa(—Ko Xy +13) (4.51)
q
where k, is defined by eqn (4.21) and

hy, = % Idn Idm oos(”;")cos(q’;")h(n -m). (452
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From eqns (4.49) and (4.52) h,, is calculated as

dn f dmh(m)cos(p Nn)cos(ﬂ(%;.—m) (4.53)

d"[m(pﬁ")ws(",’v"' ) _f [ annmyen(437)

—cos(p ;n)sin(qml) j dmh(m)sm( ;:lm)] (4.54)

O ——— 2 O'-ﬁz

The underlined integrals converge quickly to the following values if g is
large:

1 VN
f dmh(m)cos(q;:,m) Tty (4.55)

1Mh (m)sin(%) =0,

and

If we replace the integrals by these asymptotic values, we obtain

VN prn qnn
foa ™G3 q)mr,,bzvzf dn °°s( N )°°S( N )

VN 1
= G N o (4.56)

This equation shows that h,, is nearly diagonal. Thus if we neglect the off
diagonal component of h,,, we have an equation which has the same
structure as that of the Rouse model:*

b= X,(0) =~k X, +£0) (@.57)
where
&p = (hyp) ™' = (122%) 2, (NB?p)? (p=1,2,...) (4.58)
and
6ﬂ2kBT 2 _
k, = Npz P (rp=0,1,2,...). (4.59)

Equation (4.58) is not correct for p =0, but , is immediately calculated
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from eqn (4.52) as

o= oo = [an [ amhn -]
. %(6n3)1’2nsb\/1(\)l. ’ (4.60)

Given {, and k,, the diffusion constant and the relaxation times are
obtained as

ksT _ 8ksT ksT
_ksT_ =0.196 2 4.61
) Do = =36 P bVN O n,R (4.61)
an
7, = Lyl = Tp™? (4.62)
with
_ g = M(YNB) _ o nR
tl—r,-\/(?’n)kBT—O.ZiZS kT (4.63)

where R =V Nb has been used.
Equations (4.61) and (4.63) predict the molecular weight dependence
of D and 7,,

DM~ 1, M*? (4.64)

which is in agreement with experimental results (eqn 4.39). A more
accurate calculation for D and 7, can be done by solving the eigenvalue
problem associated with eqn (4.50)."° Such a calculation gives slightly
different numerical coefficients: 0.192 for D, and 0.398 for 7,.

4.2.2 Zimm model in good solvent

So far we have been considering the © condition. The excluded volume
interaction is taken into account if we add a potential

U, =3vkT D 6(R, —R,,). (4.65)

If such a potential is introduced, the Langevin equation again becomes
nonlinear. However, on the same level of the approximation as the
preaveraging approximation, we can treat the problem simply by
assuming the linear Langevin equation

by X,(0) =~k X, +£,(0) (4.66)

and include the excluded volume effect in the parameters ¢, and k,.'>*
This approximation, which we shall refer to as a linearization approxima-
tion, works well at least qualitatively as will be shown later.
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The parameter {, is again determined by eqns (4.48) and (4.52),

bp = (hpp) " = [% Tdn T dm cos(l’_l’;")cos(MTm)

X — < 1 >]~l (4.67)
67, \[R, —R,p|/cqd '

To calculate {,, we have to know the distribution of R, — R,, of the
excluded volume chain. Since this is not yet known precisely, we assume,
for the sake of simplicity, that the distribution of R, — R,, is the same as
the distribution of the end-to-end vector of the excluded volume chain
with n — m segments, and has the following functional form:">¢

an — R,,,')
- =Fl—5, ). 4.68
WonRe = R = F([ (4.65)
This distribution function gives
1 > 1
T ) B | 4.69
<|R,,—R,,,| eq |[n—m|'b (4.69)
Substituting eqn (4.69) into eqn (4.67), we have
1
o L= 4,70
0 ﬂstb ( )
and
17 pzm\ 1 N
ol — > YT 4.71
P 2N J;dm cos( N )n, |m|¥ b n,bp (4.71)

On the other hand the parameter k, can be determined from the
equilibrium distribution of X, as

3
= X2

To calculate (X3).,, it is convenient to rewrite eqn (4.18) using
integration by parts, so that

kT for p=1,2,... and k,=0. (4.72)

N
1 ) p:m) oR,
= —— -— . 4.73
X, o ! dn sm( ~ ) on (4.73)

+ This assumption has been shown to be incorrect by direct perturbation calculation'® and
neutron scattering experiment.'” However, the conclusions (eqns (4.80)-(4.82)), will not be
changed even if we use a more accurate form for ¥, , .
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Thus (X3)., is written as

1 pnn) (p:tm) <8R 8R,,,>
2
- . 4
(Xp)eq jdnfdm sm( N sin on om e, (4.74)
Using
3 d 1 & ,
on R om R, = 23ndm (R, = Rp) (4.75)

we rewrite (}[2)eq

(X7)eq= 2w 2Idnjdm sin )sm( N ) ana;m Ry~ Ry)eo:
Thus (4.76)
k! mj dn J dms S‘“(p;n)mn(p JI:Im)

8 ana;m ((Ry = Rp)*)eq: (4.77)

By using the same approximation as in eqn (4.54), we have

1 prn pan
ke = sz Zf d”s"‘( N )s"‘( N )
2

X I d(m—n)cos(%t(m—n)) a'ja

n ((Rn - Rm)z)eq

&
m on <(Rn - Rm)z)eq'

(4.78)

EIE;T_p_ fd(m ——n)cos(— (m - n))

Since ((R, — R,.)*)eq=|n —m[**b* according to eqn (4.68), k, is eval-
uated from eqn (4.78) as

N—Zv
k, =?k8Tp2”“. (4.79)
The diffusion constant of the centre of mass is given by kzT/&,,
kT
DG = —DB (4 80)

n<Nb
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and the relaxation times are given by 7, = {,/k,, which are written as

T, =1,/p>" (4.81)
with
T, =7, = Cl/kl = n,NsvbslkBT. (4.82)
Using R, =N"b, eqns (4.80) and (4.82) are again written in the same
form as eqns (4.61) and (4.63),
py=keL M ops (4.83)
NsRg
These results are the same as for rigid spheres:® the characteristic
behaviour of the dilute solution is quite similar to the suspension of
spheres of radius R,.
Calculation of D based on the renormalization group theory is given
by Oono et al.'® In the good solvent limit this result is written as

kgT
V6 n,R,

The numerical factor is close to the 0.196 given in eqn (4.61).

D =0.2030 (4.84)

4.3 Dynamical scaling

It has been proposed®®?! that the static scaling law described in Section
2.6 can be generalized to dynamical phenomena. The hypothesis is that,
for a polymer described by the Zimm model, when the parameters of the
model are changed as

N— N/A, b— bAY (4.85)
any physical quantities, which may be static or dynamic, are changed as
A— VA (4.86)

The exponent v is the same as that which appeared in the static scaling (v
is 1/2 in © solvent and about 3/5 in a good solvent).

Though experimental confirmation of dynamical scaling is not so
satisfactory as static scaling, and there is a delicate theoretical problem

t The situation is similar to that in critical phenomena, where although accepted, dynamical
scaling? has often been found to be more delicate and less universal than static scaling. In
the polymer problems, the scaling prediction is largely supported by various experiments,
but minute discrepancies have been found, which, at this stage, it is difficult to tell whether
they are due to the experiments being done outside the scaling regime, or they indicate the
failure of the scalin(gj(see the discussion in ref. 21, Chapter 6). The renormalization group
calculation by Oono™ indicates that the dynamical scaling is not rigorous, though the error
is usually quite small.
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related to the topological interaction which will be discussed later, the
dynamical scaling is generally believed to hold for polymers of very large
molecular weight.

To show the usefulness of the scaling argument, let us consider the
diffusion constant Dg. As indicated by the Zimm model, the parameters
appearing in the problem are N, b, k3T and n,. From the dimensional
analysis, D is written as

_ kT
Dg; = n.b f(N). (4.87)
Since Dy is invariant under the scaling transformation,
kT kgT
N) = . 4.88
ooy TN =2 2SN/ (4.88)
For this to be true for arbitrary A, f(N) must have the following form
f(N) = numerical constant * N~ ". (4.89)

Hence

kgT . kgT
D = constant * —— N~V = .
¢ = constan nb R,

By similar argument, we can show that the rotational relaxation time of
such a chain is

(4.90)

o N 'b)’ _n.Rg
" kgT kT

Equations (4.90) and (4.91) agree with eqn (4.83).

For the Rouse model, which has no hydrodynamic interaction, a
similar scaling property exists. When the A segments are grouped, the
parameters in the Rouse model change as

. (4.91)

N->NA, b—bAY, §— CA. (4.92)
Under this transformation, a physical quantity A changes as
A— VA, (4.93)
From this it can be shown that D and 7, depend on N as
DgxN7!, 7, x N1+2V, (4.94)

These results have been checked by computer simulation.?*

4.4 Dynamic light scattering

The Brownian motion of polymers can be experimentally studied by
dynamic light scattering.>®> By measuring the time correlation of the
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intensity of the scattered light, one can extract the dynamical structure
factor

80k, )= = (explik + (R,(0) R (O)]). (4.95)
The behaviour of g(k, ¢) has two limiting regimes.

The regime kR, < 1. In this regime, only the overall translational motion
of the polymer can be seen because g(k, t) is written as

8k )=~ > (explik - (Ro(r) ~ Ro(0)

+ik - (R,(t) — Rs(1)) — ik - (R,,(0) — Rg(0))]).

The underlined terms may be put at zero since they are of the order of
kR, which is much less than unity. Thus

g(k, 1) = N{exp[ik - (Rs(t) - R(0))]) . (4.96)

If ¢ is large, the distribution of R;(¢) — R;(0) becomes Gaussiant with
the variance 2Dt, hence

gk,t)=N f drexp(ik - r)(4xDgt)~>? exp( )
4Dt
= N exp(—Dgk’t). (4.97)
Thus the decay of g(k, t) for a long time region is written as
g(k, t) x exp(—Tt) (4.98)
with
Fk - Dckz. (4. 99)

On the other hand the initial decay rate of g(k, ) can be calculated
rigorously by use of the formula (3.51).%¢

d
ro = 5, Inlg(k, )] .

koT & (Hy explik - (R~ R,))) -k
TS ek @Ry 10

For kR, «< 1, explik - (R,, R,,)] can be replaced by unity, so that eqn
(4.100) reduces to

ry = %T g} (M )eq: kk = DEK? (4.101)

f This is a result of the central limit theorem mentioned in Section 2.1.3. Provided the
correlation time 7. of the internal motions is finite, the distribution of R;(0) - R;(0)
becomes Gaussian for 1> ..
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where

N N
Dg<>="BTId_"Id'"<|R _{R |> . (4.102)
0 0 n m

Equation (4.102) was originally proposed by Kirkwood” as a rigorous
expression for Dg. Though D is generally not equal to Dg, it turned
out that the difference between Dg and D is usually quite small. In fact
experimentally in the small & region no significant change is observed in
the slope of g(k, t) beyond the uncertainties caused by the molecular
weight distribution.

Calculation of D&’ has already been done in the previous section since
in the linearization approximation Dg and D& are the same (compare
eqn (4.67) with eqn (4.102)). For © condition the predicted molecular
weight dependence Dg x M~%% has been confirmed rather well,”*>! but
the experimental value of D¢ is about 15% smaller than the theoretical
value calculated by eqn (4.61) using R, which is obtained from static light
scattering.””®> Several explanations have been proposed, such as the
non-Gaussian distribution,> the slowness to reach the asymptotic
behaviours,”¢ or the effect of hydrodynamic fluctuation®**® which has
been neglected in the Zimm model. Though a clear conclusion has not
yet been given (see ref. 33 for a discussion), this level of comparison
displays the remarkable success of the Zimm model and the present level
of accuracy in the theory of dilute solutions.

For good solvents where

Dgx M~ (4.103)

the measured exponent v, is about 0.55,”-° which is slightly smaller than
the theoretical value v=0.6. The discrepancy was first thought to
indicate the failure of the dynamical scaling law, but the theoretical
inequality proposed by des Cloizeaux* suggests that the exponent should
eventually approach v for very large molecular weight. The reason for
the discrepancy is now thought to be due to the scaling regime in Dg
starting at a much higher molecular weight than in R,. Indeed this was
indicated earlier by the perturbation expansion of D% with respect to
the excluded volume parameter.**> A semi-phenomenological theory
which shows the slow approach to the asymptotic behaviour is given by
Weill and des Cloizeaux.*

The regime kR,>> 1. In this regime, we can see the internal motion of
the chain. Calculation of g(k, ) is involved even if the linearization
approximation is used,**° (see Appendix 4.III), but the characteristic
features of g(k, t) can be obtained from the scaling argument.

By the same line of argument as in Section 4.3, we can show that
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g(k, t) is written as

g(k, t) = NF(kR,, tDg/R%). (4.104)
If kR, >>1, g(k, t) should be independent of N since the local motion is
independent of the total chain length. Since R; and Dg depend on N as

R, « N¥ and D x N™"»(vp =1 for the Rouse model and v for the Zimm
model), g(k, t) must have the following functional form,

g(k, 1) = N(kR,)" " F(tDGR:2(kR,)") (4.105)
where
x=2+ V—: . (4.106)

Thus if g(k, t)/g(k, 0) is plotted against tI', where
Iy = DoR;*(kR,) (4.107)

one curve is obtained for all values of k.
The dynamical structure factor (4.105) is characterized by the decay
rate I'; which is given by

[x = Dk*R%  for the Rouse model (v, =1, v=1/2)
= Dck’R, for the Zimm model (v, = v). (4.108)

Note that in the Zimm model the relation I', k> holds both in ©
solvents and in good solvents.

In the region kR, >> 1, the decay of g(k, t) is not a single exponential
(see Appendix 4.1II). The decay curve, however, is conveniently charac-
terized by the initial decay rate I'f”, To evaluate eqn (4.100) for kR, >> 1,
it is convenient to rewrite H,, by use of the Fourier transform of the
Oseen tensor (see eqn (3.111.5))

J (2n)? ( f é)e"l’[‘q (R —R,)}. (4.109)
Then eqn (4.100) is rewritten as
= k*— (k §)’
= g(k)n,j (er)3( ) (k+q)

g(k)m @n)y’ \(g-k)*  (g-k)*
Integrating over the angle between k and g, we have

-t Jor S 124
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If kR, >> 1, the integral is dominated from the large g region. Hence
using the asymptotic behaviour of g(k) =k~ (see eqn (2.132)), we have

ksT "' +k2 +k
n‘O)—4;n qu (q q 'q ]

V(3V - l) ( ) kB
“amv - D -0 ™\ 5, K (4-112)
which becomes T
Y =0.0625——k> for v=0.5 (4.113)
Ns
= o.mssl%r k* for v=0.6. (4.114)

Note that eqns (4.113) and (4.114) are rigorous and include no adjustable
parameters. Experimentally the k°> dependence of I'fY is well
confirmed.”-%% However, the experimental value is about 25% smaller
than the theoretical value.” The reason for this discrepancy is thought to
have the same origin as that for Dg.*® The characteristic behaviour of the
dynamical structure factor has also been confirmed by neutron
scattering. ‘"%

4.5 Viscoelasticity

4.5.1 Introduction

The dynamics of polymers in solution can be studied by measuring their
viscoelastic properties. Shear flows, for which the velocity components
are given by

v (r, 1) = k(O)r,, v, =v,=0, (4.115)

are commohly used for studying these properties. If the shear rate x(f) is
small enough, the shear stress depends linearly on x(f) and can be
written as™

Oy(t) = f d'G(t—1t")x(t") (4.116)

where G(?) is called the shear relaxation modulus. For dilute solutions, in

which the effect of the polymer is small, it is convenient to write eqn
(4.116) as

O,y (1) = k(1) + J dt'G®(t — ")k (t'). (4.117)
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The first term represents the property of the pure solvent and the second
term represents the effect of the polymers.

Two special cases are important.

(i) Steady shear flow:

k(t) = x = constant. (4.118)

In this case, the shear stress is constant, which defines the steady state
viscosity 1

n=—0,. (4.119)

From eqns (4.117) and (4.118), it follows that
n=n+ j AGOr). (4.120)
0

The increase in the viscosity due to the presence of polymers is usually
expressed by the intrinsic viscosity, or viscosity number, defined by

[n]= }im.o—" — L 4.121)

where p is the weight of the polymer in the unit volume of solution.
Using ¢ (the number of segments per volume), N (the number of
segments per polymer), M (the molecular weight) and N, (the Avogadro
number), p is written as

p=S2 (4.122)

(ii) Oscillatory flow:
k(t) = ko cos(ot) = ko Re(e'™) (4.123)

(where Re stands for the real part.) The response for this flow defines the
complex modulus G*(w):

0., (1) = K, Re(%w—) e““‘) . (4.124)
Since eqn (4.117) gives

Oyy(t) = Ko Re(e“"‘n, + ] dr'G®(t — t')e“"")

= Ko Re[e“‘"(r}, + Idt'G("’(t’)e“"’")] . (4.125)
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G*(w) is written as
G*(w) =iwn, + iw I dee " 'G®(¢t)
0

=G'(w) +iG"(). (4.126)

The real part G'(w) and the imaginary part G"(®) are called the storage
modulus and the loss modulus. Experimental results are often expressed
by the dimensionless intrinsic moduli defined by:*™

[G'(@)]r = unpRTG(co) hm— Idtwsnn(wt)G(P)(t) (4.127a)
(G"(@)lk = lim 2= (G"(@) ~ @n) = lim f dreo cos(@)GO(e)

(4.127b)

where R = N,k is the gas constant.

4.5.2 Microscopic expression for the stress tensor

Let us now study the viscoelastic properties using molecular models. As
was discussed in Chapter 3, the macroscopic stress of the polymer
solutions is written as (see eqn (3.133))

O = Ns(Kap(t) + Kpa (1)) + 02'3 + Pl,g (4.128)
where

o= —— 2 (EuRog). (4.129)

n-l

Here the factor ¢/N accounts for the number of polymers in the unit
volume.
Since F, is written as

F,=- aR Th¥+ ), (4.130)
eqn (4.129) is rewritten as
o8 =— J’d{R,,}‘l‘ 3R (kgTIn¥ + U)R,5
=53 [ I O{R, ks T R,,,B +( a;” R,,,,)]. (4.131)

The underlined term gives the isotropic stress k37,5 by integration by
parts, and can be dropped in the incompressible fluid (see Section 3.7.2).
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au
®) ="
o3 Z <6R Res). (4.132)
Under O conditions, U is given by eqn (4.4), hence

(3 3kgT
N sz 21( (Rn+l+Rn 1™ n)a'Rnﬁ>

3kpT
;/ b2 ,,E_:, ((Rns1 = Rn)a(Rys1 — Ry)p) (4.133)

or in the continuous limit

N
¢ 3yT j <3R,,,8R,,ﬂ>
BN od” an on /" (“4.134)

o®P) =

In a good solvent, one has to add the excluded volume potential eqn
(4.65) to (4.132). However, the stress arising from this potential can be
neglected because

(3 3 o) =547 2 ({3 4Ra = Ro)e)

= ks T3 ([ 5= . R,,,)](R,,,-R,,,,,))

-2k rz[( [6(R, — Rp)(Rop — Rg)]

- 8(R, —R,,,)é,,,}] . (4.135)

The first term is zero, and the second term can be omitted because it is
isotropic. Therefore eqn (4.134) holds even for the chain with the
excluded volume effect. (This of course does not mean that the excluded
volume interaction plays no part in the viscoelastic properties. The
excluded volume does affect the viscoelastic properties through the
distribution function ¥ over which the average in eqn (4.134) is taken.)
Equation (4.134) can be rewritten using normal coordinates (4.18) as

o= TS 55) (55) om0 0 e )

c3

kpT < 2
=5 ; ”N" (Xpa()X,5(0)) . (4.136)
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In © conditions, this can be written using eqn (4.21)

08 =~ 3 ko Xpa o). (4.137)

In a good solvent, eqn (4.137) is not rigorous since k, is now given by eqn
(4.72). However, use of eqn (4.137) may be justified in the linearization
approximation, which is to assume that the potential U is given by

i 1 kX2 (4.138)
7 (Xp)ea 7 7 °
Equation (4.137) can be derived from this potential by the principle of
virtual work described in Section 3.7.5. Thus we shall use eqn (4.137) for
both © and good solvents.

U=3%ksT D —52—

4.5.3 Calculation of the intrinsic viscosity

We shall now calculate the stress using the linearization approximation.
As was shown in Section 3.7.3, under the velocity field v(r, t) = &k(¢) - r,
each bead has an additional velocity x(f)-R, (see eqn (3.120)). This
gives the velocity x(¢)-X, in normal coordinates. Thus the Langevin
equation for X, now becomes

a% () = _Cp X, (1) + );,(r) + Kk(t) - X, (0). (4.139)

To calculate {X,,X,z) it is convenient to rewrite this into an equivalent
Smoluchowski equation.t

v 1 )

_1g 9 o 2 . n.
el (k,,rr k,,qu:) % X KO XY @10

If we multiply both sides of eqn (4.140) by X,.X,; and integrate over all
the normal coordinates, we get, after integration by parts

3 1 3 9
3 (XpaXpp) = <2 AT [_ ~kgT 3X, % (KpaXpp) = kX, - S_Xq (Xpa'XPﬁ)]

+ 5 KX, 3 (X))

q9 axq
t Equation (4.141) can also be derived from the Langevin equation if we use the relation,

(Xpa(‘)fpp(‘)) = kBT‘saﬂ
which follows from eqn (4.22), and the short time solution of eqn (4.139),

X, =X,(t- Ar)+ Ar( Ko x (- A+ x(— A0 X (- At)) j d:'ﬁ—
P

— At
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1
=— [ZkBT(Sap - up(&axpﬂ )] + Kaﬂ(XWXPﬁ)
P
+ K { Xppu Xpa ) - (4.141)

This equation can be solved for arbitrary kx,4(f) (see Section 7.6.3), but
here we consider a special case of the shear flow given by eqn (4.115). To
calculate the shear stress o,,(¢), we have to solve

()(',,,,)f.',,,)——223()(,,x ) +K(XZ,) . (4.142)

For small kx, (X7,) may be replaced by the equilibrium value kzT/k,.
Hence eqn (4.142) becomes

k, kgT

o __ kpT
= (XX, ) =—-2-F z, X,.X,)+k k- (4.143)
In the steady state, eqn (4.143) gives
(X X,y ) = 2—% kpTk. (4.144)
14
The shear stress is calculated from eqns (4.137) and (4.144) as
o(p) =— =—— _B )
2 o ( Xpx Xy ) =3 N,E.:I k. kpTx. (4.145)

Thus the intrinsic viscosity is given by

a(p) kBT C C
= 22
or, by eqn (4.122),
NAkBT
4.14

The sum is evaluated for various models:
(i) The Rouse model: egns (4.20) and (4.21) give

bzl,’ N, N°b*¢ax* N, N**¢
(] = Mn, 6> ,,zlpz T Mn, 6r? ?_M_n, 36 - (4148
(ii) The Zimm model for © solvent: eqns (4.58) and (4.59) give
_NA(WNbY &

_ N,
(M=% Vizzy 2P~ =31 0-425(VNbY. (4.149)
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(ili) The Zimm model for good solvent: eqns (4.71) and (4.79) give

[n] z%N” % pp’ —-% N>*b>. (4.150)
If we write the molecular weight dependence of [7] as
[n]cM™ (4.151)
we have
1 Rouse model (© solvent),
v, =9 0.5 Zimm model (© solvent), (4.152)

3v—1=0.8 Zimm model (good solvent).

Experimental results show that in the © solvent v, is 0.5, in agreement
with the Zimm model. The agreement is actually more quantitative. Eqn
(4.149) is written in the form

[n]= % (V6R,)’ (4.153)

where the constant ®,, called the Flory-Fox parameter, is
®, =0.425N, =2.56 x 10%. (4.154)

The experimental value of ®, is about 2.5 x 10>. Perhaps this good
agreement is fortuitous since a more accurate analysis'® of the pre-
averaged equation (4.50) gives @, =2.84 X 10”. Various theoretical
results' give @, values ranging from 2.2 X 10* to 2.87 X 10%. In any case
this level of agreement again indicates the success of the Zimm model in
the dilute solution theory.

In good solvent, the experimental value of v, is slightly smaller than
0.8. This is perhaps because, as in the case of D, the molecular weight is
not sufficiently high for the asymptotic behaviour to be observed. In such
regions the Flory-Fox parameter decreases with increasing molecular
weight and increasing excluded volume parameter. Detailed calculations
for @, are described in the book by Yamakawa.'?

4.5.4 Intrinsic moduli

Next we consider the case that the shear rate is not constant. Equation
(4.143) is solved for general x(¢),

(X, X)) = %‘ I dt' exp(—(t —t')/7,)x(t') (4.155)
where ’
1, =8,/2k, =t,p7" (4.156)
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2 Rouse model,
p =19 3/2 Zimm model (© condition), (4.157)
3v  Zimm model (good solvent).

(Note that 7, is different from the rotational relaxation time z, by a factor
1/2.) From eqns (4.137) and (4.155), G®)(¢) is calculated as

RT
GO(r) =§kBT S exp(—t/t,) = "7— S exp(—t/7,).  (4.158)
p p

Hence .
[G'(w)]r= J drw sin(wt)z exp(—t/t,) = i 1 iazrp X 5> (4.159)
[G"(w))r = f dtw cos(wt) Z exp(—t/t,) = 21 %. (4.160)

The expressions are simplified in two cases.
(i) wt,<«<1: In this case, [G'(w)]z and [G"(@)]x are approximated as

[G'(@)k = (e’ 3, p~2 4.161)
p=1
[G"(w)]r = w1, % p~* (4.162)

Hence [G'(w)]z and [G"(w)]& are proportional to w? and w respectively.
(i) wt,>>1: In this case the sum over p can be replaced by an
integral, so that

v [ (@T)p T
[G (w)]R -ldp 1 +(wtl)2p—2y_ (wtl)u i

4

= (wT,)"* 2 Sin(z21) (4.163)
and -
[G"(w)]r = (wﬁ)u“;
Vu i
_— =(wt,) 20 cos(wI20) (4.164)

(a) u =2 (Rouse model)

[G'(0)]r = [G"(0)]r ——-—2\% (1) =1.11(wr))"?.  (4.165)
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(b) u=3/2 (Zimm model in © solvent)

[G'(w)]r=1.21(w1)?: [G"(@)]r=2.09(wT,)??. (4.166)
(c) u=9/5 (Zimm model in good solvent)

[G' (@) = 1.14(wT,)*": [G"(w)]r =1.38(w7,)”®. (4.167)

For © conditions, eqn (4.166) is well confirmed.”* > For good solvent,
experimental data have been interpreted in terms of the so called
‘draining parameter’®®, but the data might be interpreted by the above
theory. Indeed eqns (4.166) and (4.167) indicate that the asymptotic
slope of [G'(w)]r and [G"(w)]r decreases as the solubility of the polymer
increases, which is consistent with the experimental results.

4.6 Variational bounds for the transport coefficients

4.6.1 Introduction

When the hydrodynamic interaction is introduced, rigorous analysis of
the Smoluchowski equation or the Langevin equation becomes impos-
sible. In the previous sections, we used the preaveraging approximation
to avoid this difficulty. Another way of handling the hydrodynamic
interaction is to use a variational principle.>*** This method gives
rigorous bounds for the transport coefficients such as [n] and Ds. The
method has an advantage that the resulting formulae are easily applied to
general polymers such as stiff polymers, branched polymers, or colloidal
suspensions.

A cautionary remark has to be made. The variational principle in this
section is based on the positive definiteness of the mobility matrix, i.e.,
for any vector {F,}:

> FE,-H,, F,=0 (4.168)

This condition is guaranteed for the correct mobility matrix. However,
the mobility matrix given by eqn (4.40) is an approximate one, and does
not satisfy the inequality (4.168) in a certain configuration in which the
beads are too close to each other.”® An improved formula which
guarantees the inequality is proposed by Rotne and Prager.”” However,
this correction is irrelevant for the asymptotic behaviour of N >> 1, which
is determined by the hydrodynamic interaction between beads far apart
from each other. Thus we shall use eqn (4.40) for H, ,,..

4.6.2 Bounds for the intrinsic viscosity

Lower bound. According to the formalism described in Section 3.7, the
intrinsic viscosity [#] can be calculated in the following way (the shear
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flow (eqn 4.115) being considered):
(i) Firstly, the steady-state distribution function ¥ is obtained by
solving the Smoluchowski equation in shear flow

3 EL Y 3
Zﬁ:-%-[ka + w]-é‘,ﬁm,,,w-o. (4.169)

R, IR,
(ii) Secondly, [11] is calculated from eqns (4.121) and (4.129)
N,
= o® = 2
["] p"s xy ﬂ,KM% (Rnyan)
2]
D Ruy 22— (ksTIn¥+U). (4.170)

To put this into a variational formulation, we first rewrite eqn (4.169)
using the equilibrium distribution function W, xexp(—U/kpT) and the
deviation @ as

Y=y, o (4.171)

Since the system is homogeneous, the function ® satisfies translational
invariance: i.e., for arbitrary a,

®({R,}) = P({R, + a)}). (4.172)

This condition is needed to ensure that the surface integrals appearing in
the integral by parts in the following analysis vanish. Substituting eqn
(4.171) into eqn (4.169) and retaining the terms linear in x, we have

,,,,.aR (H,,,,, ks ,qaR) E—KR (4.173)
To the first order in k, eqn (4.170) is written as
oD
[n]= n}¥eaks T 2 R, —/— (4.174)
OR,,.
= M <2 R, 3R > (4.175)

where (.. .)., is the average over the equilibrium distribution function:

- f dRIY.((R)). ... (4.176)

Now eqns (4.173) and (4.175) are converted to the following varia-
tional principle:*® for arbitrary ® satisfying eqn (4.172)

N,
M 2

[n]= w[®) (4.177)
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where

o
W[®] = ks < kBTZaR '""'aR —R,,,,,) . (4.178)
m,n eq

Equation (4.177) gives a lower bound for the intrinsic viscosity.
To prove eqn (4.177), we note that for the true solution ®* which
satisfies eqn (4.173) the following equality holds for arbitrary ®:

(k,T}_‘,g;I: u,,,,fi) <ZK£R )eq. (4.179)

oR

This can be proved by integration by parts. Using eqn (4.179) for the
special case of ® = ®*, we can show that
Ra) =[nlna’MIN,.  (4.180)

*
W[®*)=ksT <§‘, 22
eq
Furthermore, from eqns (4.178), (4.180), and (4.168), it follows that

W[D*] - W[®]=ksT <"BT 2 (g;)* aa:)

o

a0* 30
R, 4R,

)> =0. (4.181)
ca

Equation (4.177) follows from eqns (4.180) and (4.181).
A simple choice of the trial function is

®=1+&> R.R,, (4.182)

where
R,=R,—-R; (4.183)

and § is a variational parameter to be determined. Substituting eqn
(4.182) into eqn (4.178), we have

2
W[®]= — E (ksT)*E*N’Ry; + 3xkp TENR? (4.184)
where

- % ,,Z,. ((RycRryHnysYeq + (RiiRicHonyy )eq)  (4.185)

and we have used the relations

(RmenyHmnyx>cq (Rman.x mnxy)cq

(Ri,ananmnyy )cq = <Rmany mnxx )cq- (4186)
The best estimate for [n] is obtained by maximizing eqn (4.184) with
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respect to &, which gives

N, R
18MR,,’ (4.187)
The right-hand side includes only the average over the equilibrium
distribution function. It can be shown that eqn (4.187) gives a correct
viscosity for two limiting cases, i.e., spherical particles and rigid rodlike
particles. For flexible polymers in the © condition, however, the bound is
rather weak: in terms of the Flory-Fox parameter, one obtains (after
some tedious calculation)®®

® > 53:(6m%) 2N, =1.90 x 107, (4.188)

[n]=

Upper bound. A formula for the upper bounds for [n] was given by
Fixman®

(115 3 S (Ve K R) - (H o (V=K R (4.189)

where V, is a function of {R,} satisfying

3
(V¥ _)=0. (4.190)
E,,: oR, (Va¥eo)
Use of this variational principle is not easy since it requires the evaluation
of (H™),,.. Nevertheless, the calculation can be done numerically,***
and the results indicate that the error of the preaveraging approximation
is less than 30% for [n].

4.6.3 Bounds for the diffusion constant

Upper bound. Next we consider the translational diffusion constant. To
calculate D¢, we consider that a weak constant field

1
Uexe=—FRg: = =~ > FR,, (4.191)

is applied to the solution in uniform concentration. The field will cause a
uniform motion of the centres of mass of each polymer with a constant
velocity (V) which is proportional to F. According to the fluctuation
dissipation theorem, Dg is obtained from (V) by (see eqn (3.67))

DG —_ (VGZ>kBT.
F

To calculate {Vg,) we have to solve the Smoluchowski equation for

(4.192)
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the steady state:

o F
,,,,,aR *Hom - ‘p“'(k" 3R,, N) 0

where F = Fe, (e, being a unit vector in the direction of the z axis). Since
we are considering the time-scale in which polymer concentration is
homogeneous, only the translational invariant solution is needed; i.e.,

®({R,}) = P({R, + a}). (4.194)

(Mathematically this condition is needed again to ensure that the surface
integral vanishes.) Now, since the velocity of the n-th bead is given as

(4.193)

=—ZH,,,,, —(kBTln‘P+U+ U.wd)

=—§H,.m-(k5 88111;4) ;) (4.195)

(V) is calculated from
(_ o F

(Vo) =3Z @V = 2 (Hun (ka3 +3)) (4196

where terms of higher order in F have been neglected. The term 3®/3R,,
denotes the driving force due to the deformation of the molecule. If we
neglect this term, we have

F F 1
V 2] = 32 nmzz = * *
(Vor) =33 2 (Homer)ou =57 3 (=) - 419)
This gives the Kirkwood formula

DF = - sz <|R - I> (4.198)

To see the effect of the deformation term 3®/3R,,, we have to solve
eqn (4.193). The effect can be calculated by a variational principle. It can
be shown that for any & that satisfies eqn (4.194)

Dg < kp‘sz W, [®] (4.199)
where
wio1= 3 (732 5) (1722 B)

Equation (4.199) indicates that the Kirkwood formula (4.198) cor-
responds to the choice of @ =1 and is actually an upper bound for D,;.
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Lower bound. A lower bound for the diffusion constant is given in a
similar form to eqn (4.189).° Let V, be the function which satisfies eqn
(4.190), then
D6 =DE -2 (T (V= V) - (H - (Vo — V) (4:20)
n,m eq
where

VO=SH,.-e,. (4.202)

Given the upper and lower bounds, one can estimate the error of the
preaveraging approximation. Fixman® showed that the Kirkwood for-
mula gives quite accurate estimation for D: for flexible polymers in ©
condition, the error is of the order of a few per cent.

4.7 Birefringence

4.7.1 Birefringence of polymer solutions

Polymer solutions are isotropic at equilibrium. If there is a velocity
gradient, the statistical distribution of the polymer is deformed from the
isotropic state, and the optical property of the solution becomes
anisotropic. This phenomena is called flow birefringence (or the Maxwell
effect).?1%2 Other external fields such as electric or magnetic fields also
cause birefringence, which is called electric birefringence (or Kerr effect)
and magnetic birefringence (Cotton—Mouton effect), respectively.

The birefringence of a material is expressed by the anisotropic
dielectric tensor 2,4 at optical frequency, or the refractive index tensor
fiag Which is the square root of 2., i.e.,

Aaphiup = Eap- (4.203)

It is convenient to decompose £,5 and #,g into an isotropic tensor and a
purely anisotropic tensor whose trace is zero:

éaﬁ = 860,3 4 Eap) ﬁaﬂ = néaﬂ 4+ Rag (4.204)
where
4o =0 and n,,=0. (4.205)

In polymeric systems, the anisotropic part E.p 18 usually much smaller
than the isotropic part £8,4 (|€ap|/€ <107°). When this is so, eqn (4.203)
gives

1
Map =5 Eap- (4.206)

Let us now consider the flow birefringence. If the velocity gradient
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tensor K,g is small, the birefringence is linear to x,g and written asf

Nag(£) = f At (e — 1) (Kap (t') + Kpalt"))- (4.207)

In a steady state
Rag = A’M(Kaﬁ + Kﬂa)' (4. 208)

The constant A,, is called the Maxwell constant. In dilute polymer
solutions, experimental results are often expressed by the ‘intrinsic
Maxwell constant’ defined by

2Anm

=i . 4.209
(7] oY) (4.209)

4.7.2 Molecular expression for birefringence

The birefringence of polymer solutions has two origins. Firstly, since the
polymer segments have anisotropic polarizability, the orientation of the
bond vector of the main chain causes birefringence, called the intrinsic
birefringence. Secondly, since the dielectric constant of the polymer coil
region is different from that of the solvent, the anisotropy of the shape of
the polymer coil creates an anisotropic internal field, which also
contributes to the birefringence. This is called the form birefringence.

Intrinsic birefringence. The intrinsic birefringence of polymeric materials
was first calculated by Kuhn.®® He considered a polymer segment whose.
end-to-end vector is fixed at r, and calculated its average polarizability
®op(r) assuming that

(i) The segment is made up of n, bonds connected by universal joints.
Each bond has anisotropic polarizability, a; along itself and «,
perpendicular to itself (see Fig. 4.2a).

(ii) The total polarizability is the sum of the polarizability of individual
bonds.

Kuhn’s result is written as® %3

ap(r) =%(an +200,)0qp
+§(a" -a,) (rarp _ %64143'2)[1 +1_2 (ﬂ)2 + .. ] . (4.210)

5 nb? 35 \n,b

If the polymer segment is not extremely extended, |r| is of the order of

1 In electric (or magnetic) birefringence, the birefringence is not linear to the field, so that
the response function is not written in the simple form (see Chapter 8).
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(a

Fig. 4.2. (a) Kuhn’s model, (b) Additivity assumption: if a,s(r;) and a,s(r,) are
the polarizability of the part AB and BC respectively, the total polarizability is

a«p(r) = (a'aﬁ(rl) + Xap (r2))q+qar

Vn,b, so that the underlined terms can be neglected. Thus the
anisotropic part of the polarizability tensor

@ap(r) = Gop(r) — 38, (r)Sap (4.211)
is given by
@op(r) = A(targ —306,57) (4.212)
where
_ § (o — )
A= _"_n, o (4.213)

An important result of this model is that in the Gaussian region A is
independent of r and proportional to 1/n,. Actually this conclusion holds
for more general models. In Appendix 4.1V, it is shown that the
polarizability tensor is written in the form of eqn (4.212) with a constant
A (proportional to n; ') provided the following conditions are satisfied.

(i) The statistics of the chain is Gaussian.

(i) The polarizability a,z(r) is additive;f i.e., when the segment is
divided into two parts, 1 and 2, the total polarizability is given by (see
Fig. 4.2b)

aaﬂ(r) = (aa'ﬂ(rl) + aaﬂ(h)>n+q=r (4'214)

where a,g(r;) and a,g(r,) are the polarizability of each part and the
average is taken for the equilibrium state with r; + r, being fixed at r. In

t The effect of the excluded volume interaction on A is not known, but if the size of the
segment is taken to be small, the effect will be only to change the constant 4.

1 The additivity is not satisfied if the dipole—dsigole interaction within the segment is taken
into account. It has been shown by Copic™ that this effect is included in the form
birefringence.
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this general case, A is written as

=5 (4.215)

where (r?)., is the equilibrium average of r’ in free state and Ay is a
constant independent of the size of the segment: Ay depends on the
detailed chemical structure and can be positive or negative. A micro-
scopic derivation of Ay is described in refs 64 and 65, and the
experimental values are summarized in ref. 61.

Now, eqn (4.212) can be used for each Rouse segment bounded by two
beads, say n and n — 1, then r and (r?)., can be replaced by R, —R,_, =
AR, /8n and b?, respectively. The polarizability of this Rouse segment is
then written as

_ Ay (aR,.,, ORns (aR,,)z)
%es =722\ "3, an 16,4 ) ) (4.216)

To relate the polarizability of individual segments to macroscopic
birefringence, Kuhn® used the Clausius—Mossotti equation, according to
which the (isotropic) refractive index n is related to the (isotropic)
polarizability of individual molecules as:

n*—-1 4n
;‘-2-+—2=?2 a; (4.217)
where the summation is taken for all the molecules in unit volume.
According to eqn (4.217), if a; undergoes a slight change d«;, n changes
to

2
on = 5 (n*+2)?3 da, (4.218)

Using this relation for each component of the anisotropic polarizability
tensor @,,g, which is much smaller than the isotropic part, one gets

. 2m
n%=%(n2+2)2 Y G (4.219)

all segments
in unit volume

where the superscript (i) stands for the contribution of the intrinsic
birefringence. Equations (4.216) and (4.219) give

N
. 1 [3R,. 3R 3R,\*
@)= | e _ T
n®, qunbz[ P~ gaab( )]> (4.220)
where
2 PN,
K=2=(n?+2p252
5, (PP AY. (4.221)

The factor pN,/M accounts for the number of polymers in a unit volume.



BIREFRINGENCE 125

@) (b) ()

Fig. 4.3. (a) Polymer, (b) spheroidal model, and (c) fuzzy spheroidal model.

Form birefringence. The form birefringence arises from the difference in
the isotropic part of the polarizability between polymer segments and
solvent molecules. A simple way to understand this is to regard the
polymer coil as an ellipsoid which has a different dielectric constant
€ + ¢ from that of the outside (see Fig. 4.3).%’ For simplicity let us
consider the coil as a prolate spheroid, and denote the direction of the
long axis by a unit vector u. The polarizability of the spheroid is larger
when u is parallel to the electric field than when it is perpendicular to the
field, so that if the distribution of u is not isotropic, the dielectric constant
is not isotropic.

The average dielectric constant of a material which includes a small
number of such spheroids is calculated by electrostatics (see ref. 68, for
example) as

(6ap - ua“ﬂ) + (uauﬂ> ] (4222)

e+0e(1—N,y)/2 €+ deN;

where ¢ is the volume fraction of the spheroid and N, is a numerical
factor called the ‘demagnetization factor’ which takes values between 0
and 1/3 depending on the aspect ratio of the spheroid (N, =1/3 for a
sphere and 0 for a rod). For smali 8¢, the anisotropic part £€%= 2,5 —
(8,,)04p/3 is calculated from eqn (4.222) to be

(G =9 10— Ny (as) - 38).  429)

Bop = €0,p + e¢6s[

Note that the underlined coefficient is always positive independent of the
sign of d¢. Since the prolate orients toward the flow direction, the form
birefringence always gives a positive contribution to the Maxwell
constant.
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Though the spheroid model is convenient for displaying the charac-
teristic aspects of the form birefringence, it is not suitable for quantitative
calculation. A more general approacht is to consider that the dielectric
constant varies with position around the mean value & (see Fig. 4.3c)
such that

e(r) = & + 6¢e(r). (4.224)

If £(r) fluctuates, the dipole moment density P = (& — 1)E/4x fluctuates
by

8P.(r) = 8¢(r)E, (r)/4x. (4.225)
This causes a fluctuation of the electric field:
E,(r)=E, + 0E,(r), (4.226)
SE.(r) = I dr'G,g(r — r')8Ps(r") (4.227)
where
Gop(r) = 5 (P~ $8.) (48.28)

denotes the field created by a dipole moment. Thus the average electric
displacement D is written as

D, = (&(r)E,(r)) = ((¢ + de)(E, + O6E.(r)))
= §E, + (6e(r)0E,(r))

—2E, + %{ f A G (r — r'){86(r)de(r') E5 (r')). (4.229)

Since the fluctuation of d&(r) is very small, Eg(r') on the right-hand side
can be replaced by E;. Hence

D, = [ééap + 4%: j dr'G,g(r — r')(ée(r)ée(r'))]l?ﬁ. (4.230)

The second term becomes anisotropic if the correlation (de(r)de(r’)) is
not isotropic. The form birefringence is thus given by (note G,, =0)

1
8= yp f drG,s(r){6e(r)6e(0)). (4.231)
It can be shown that eqn (4.231) reduces to eqn (4.223) for dilute
spheroid.
t The formulation presented here was adapted from the work of Onuki and Kawasaki® for

the binary solution near the critical point. Here the static approximation is used for the
electromagnetic field. This treatment is similar to that given in refs 66 and 70.
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Equation (4.231) is rewritten using eqn (4.206) and £(r) =n(r)% in
terms of the refractive index:

nG=o- f G (1) (on(6n ). (4.232)

In the polymer solutions, én(r) can be assumed, as in the theory of light
scattering,? to be proportional to the local segment density dc(r),

on(r) = (%) oc(r) (4.233)
Hence, eqn (4.232) is rewritten as
1 =2 (22} [arGip (r){ be(r)3c(0)). (4.234)
If we use the Fourier transform of G,4(r),
4x ( dk .
Gos(r) = ~ % [y ko = 0.p)enp(ik o), (4235)
and express {(8¢(r)d¢c(0)) by the structure factor g(k),

(Be(r)be(O)) = [F5 exp(-ik - g (k) (4.236)

we finally have

n®=-25 (a") (2”)3(;@ £y —36.5)8(K). (4.237)

The form birefringence is thus directly related to the anisotropy in the
structure factor.

4.7.3 Flow birefringence

Having obtained the basic formula, we can now study the flow birefrin-
gence of dilute polymer solutions. The contribution from the intrinsic
birefringence is easily calculated. Comparing eqn (4.220) with eqn
(4.134), we note that the intrinsic birefringence is proportional to the
stress:

n% = Ca‘,f} (4.238)
where

C=

2n (n*+2)?
(P27
27kBT n

is a constant called the stress optical coefficient, which depends only on

(4.239)
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the local structure of the polymer. Hence the contribution to [n] from the
intrinsic birefringence is easily calculated from eqn (4.146) as

[n®]=2C[n]. (4.240)

However, calculation of the form birefringence is tedious (see refs 66
and 70, and also Section 5.5). Here we will give a simple approximate
treatment. Under weak shear flow eqn (4.115), the deformation of the
structure factor g(k) is proportional to the dimensionless shear rate x /Ty,
and will be written as

8(k) =geq(k) + 0g(k) with Og(k)=(k/Tx)geq(k)  (4.241)

where g. (k) is the structure factor at equilibrium and T is the
characteristic decay rate of the dynamical structure factor (see Section
4.4). From eqns (4.237) and (4.241), the form birefringence is estimated
as

2
0= (@) dk _geq(k)
nay =K |32 Qn} T, (4.242)
Since I'; and g (k) are given by
1
I'x= = F(kR;),  geq(k) =NE(kR,), (4.243)

eqn (4.242) is evaluated as
2

gt (2) Mt (2w

dc/ R; n\dc/ kgT

p (an) K1,
==|—| M. .
n \dp RT (4.244)

This result is also derived from eqn (4.223) if we use

3 R
(56 ~ (ae), (o) = K, ~KZ‘;; 1N, ~1. (4.245)

The contribution to [#] from the form birefringence is
2

1/on\> M
N = ND_p (=) —
(™} pn.K o =k n (8p) RT (4.246)

where Kk is a certain numerical constant. This formula was first derived by
Janeschitz- -Kriegl,*>”" who estimated k; from experimental results to be
0.34.

Equations (4.240) and (4.246) indicate that [#®] and [#®°] increase
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with molecular weight M as
(AP M1, [nP)x M. (4.247)

Hence for large molecular weight, the form birefringence dominates.
From eqns (4.240) and (4.246), it follows that

[7] _[n®] + [n)] (6n/3p)* M
(7] (7] nRT [n]

This relationship has been confirmed experimentally.”

The form birefringence [n®] is always positive while the intrinsic
birefringence [n”’] can be positive or negative depending on the sign of
Avy. Since the observed birefringence is the sum of the two, the analysis
of the flow birefringence is not easy in dilute solutions. Indeed, in the
case of Ay<0, the measured birefringence shows anomalous
behaviour.®’"”? This complication can be avoided if the effect of the form
birefringence is eliminated by choosing the solvent such that dn/dp = 0.
The experimental results on flow birefringence of dilute polymer solu-
tions are reviewed in refs 61 and 62.

=2C +k;

(4.248)

Appendix 4.1 The Verdier—Stockmayer model”

In this model the polymer is made up of N beads connected by N—1

bonds, each having constant length b (see Fig. 4.10). In a small time

interval At, each bead makes the following jump with probability w At.
(i) For the internal beads (i.e., beads 2,3,...,N—1)

R,—»(R,.,+R,_,—R)). (4.1.1)

(ii) For the end beads (n =1 or N)
R,—R;— v, (4.1.2)
Ry—Ry_| +vy (4.1.3)

where v, and vy are randomly chosen vectors of length b.
To analyse this model, it is convenient to look at the bond vector
v, = R, ., — R, rather than R,,. The transition rule for v, is
v,+: This happens with probability wA¢,
v,—4 v,_; This happens with probability wA¢, (4.1.4)
v,  This happens with probability 1 — 2wAt¢.

Forn=1or N —1, v, or vy,, mean the random vector.
Now let us calculate the bond correlation function

Com(t) = (v,(1) - v,,(0)). (4.1.5)
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This is obtained as follows. If the jump v,—>wv,,, occurs in the time
interval At, then C,,,(¢t + At) becomes equal to C, ., .(f). This happens
with probability wAt. The jump vw,— v,_, occurs also with probability
wAt. The probability that no jump occurs is 1 —2wAt; hence
Com(t + A1) = C o1 m(O)WAL+ C,o .y ()WAL + C,,(1)(1 —2wAL) (4.1.6)
or for At—0

o

a Cnm(‘) = W(Cn+1,m(t) + Cn—l,m(t) - 2Cnm(t)) (4‘17)

Com(t) and Cy,(t) are zero since v, and wy are chosen without any
correlation to the other bond vectors, i.e.,

Com(t) =0, Cam(t) =0. (4.1.8)
The initial condition is
C,um(0) = b?6,,,,,. (4.1.9)

By using the coordinate defined by

=3 (1%) m sin(”—N-””) Con(0) (4.1.10)

the simultaneous difference equation (4.1.7) is solved giving

C,..(t) =%b2 ; sin(p;n)sm(pN )exp(-—l t) (4.1.11)
where

_ pr
A, = 4w sin ( ZN) (4.112)

On the other hand, for the Rouse model, the quantity corresponding to
C.(t) can be obtained by identifying v, with R, /on: .

- (#50.20)

(4.1.13)

From eqns (4.23) and (4.27)

CR®(r) =4 2 3’;: ( N) sm(p ;jn)sm(p J;l )exp( t/t,)

p=1

_2, prn (p:rm ( 3n%k,T
Nb pgl sm( N )sm N )exp "IN P t). (4.1.149)
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This agrees with eqn (4.1.11) if one notes that for small p
ww

s

Thus w can be identified with 3kzT/&b2.

A, = (4.1.15)

Appendix 4.I1 Derivation of the normal modes

To find the normal coordinates, we consider the linear transformation of

R,() N
X,(f)= f dn@,mRa(1) (4.11.1)

and choose ¢,, so that the equation of motion for X, has the following
form,

3
Cp gxp

From eqns (4.9) and (4.11.1)

—k,X, + . 4.11.2)

2]

&R,
Cp ot _CpJ'dn¢pn ot +f;,) (4.11.3)

4
R,= —EC -

dn¢,,,,(k

O 2

Using integration by parts, we can rewrite this as

2ol -2l em],
hs = P P
rhs = C¢p,, an o Z,’kanRo
b
C
The first term vanishes due to eqn (4.11). Hence eqn (4.11.2) is rewritten
as

e[i2mg '

dn[ 82¢P"R +¢,,,J,‘,] (4.11.4)

O ———. 2

[82¢..

dn|k R, +¢,,,J,’,]

O, 2

- j dn(—kybpuR,) + £ (4ILS)
0
For eqn (4.11.5) to hold, we must have

%k S Opn _ = —kyPpm (4.1L.6)
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with
3_;’:1 0 at n=0andn=N (4.11.7)
and
C N
=—€E I dn,n /.- (4.11.8)
0

Equations (4.11.6) and (4.I1.7) are the eigenfunction equations for ¢,,,
which are well known and have the solution

Pon = I%cos(’%') »=0,1,2,...) (4.1L9)
and
k= k22 (p—”)2 (4.1L.10)
§ 4 C N - . .

Now £, can be chosen arbitrarily, so we choose £, such that f, satisfies
the same formula as the oscillator (see eqn (3.82)); i.e.,

(Frx(Df(0)) =28, k5 T(1). (4.11.11)
The left-hand side can be calculated from eqns (4.11.8) and (4.11.9) as

e 0)) = 222 [ an ] am cos( 27 )oos( L ) fe ) )
4.11.12)

Nz z f dn cos(p;n)cos(qnn)ZCkBTé 0(0)

_ & 1+6,
N*¢* 2

where eqn (4.12) has been used. Comparing eqns (4.11.13) and (4.11.11)
we have eqn (4.20) and thereby eqn (4.21) from eqn (4.11.10).

N8,,2tksT8,55(t) (4.11.13)

Appendix 4.1I1 Dynamic structure factor

First we consider the Rouse model, for which g(k, t) can be calculated
rigorously.* According to the theorem in Appendix 2.I, a linear
combination of the Gaussian random variables obeys the Gaussian
distribution. Since R,,(t) — R,(0) is a linear function of f,(t), which is
Gaussian, the distribution of R,,(¢) — R,,(0) is also Gaussian. Hence, eqn
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(2.1.20) gives
(explik « [R(t) — R,(0)]]) = H exp[ — 3k2{(Rpma () — Rua(0))*)]

=exp[—%¢m,.(t)] (4.1IL1)
where
Bma(t) = ((R(t) — R,(0))*). (4.111.2)

Using eqn (4.27), @..(t) is written as

Prnlt) = <[[xo(:) — X,(0)] + 212‘,1 (cos(”—’;f'- a0
- cos(p ”") ,,(0))] ) . (4.11L3)

Since the correlation between different modes vanishes, eqn (4.111.3) can
be rewritten as

B (®)= (D60) = XO)P) +4 5, [ 05237 (3,07

+cos?( 2 ) (X, (07)
_ ZCos(p ’1:,’") ("”")( (1) -xp(O))] . (4IIL4)
From eqn (4.25») and
§ ) ol i, o
we have
O () = 6Dt + | — m| b2 + N 2:3 L (” ’;,'”)oos(‘i;—”)

X (1 —exp(—p?t/tg)). (4.1IL6)

where 7 is the Rouse relaxation time given by eqn (4.25). Thus

1
gk, t)= . > exp[—kzbct -3 |n — m| k*b?

NP & 1
R ,?ws(p;n)m( )[1 exp(— tpzlfn)]] (4.111.7)
p=

The form of the g(k, t) is simplified in the two limiting cases:
(i) Small angle regime: If k’Nb?<< 1, the second and third terms in
eqn (4.111.7) may be neglected since their magnitude is less than k2Nb2.
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Hence g(k, t) becomes
g(k, t) = N exp(—k*Dgt) (4.111.8)

which agrees with eqn (4.97).

(ii) Large angle regime: If kK*’Nb*>>1, we may limit consideration to
the time region ¢<<7gz since g(k,t) becomes very small for ¢= 7z.
Equation (4.111.6) can be rewritten as

2Nb2 & 1

Gmn(t) =6Dgt + |n — m| b* + > -
p=1

X [cos(en—(nNii)) + cos(mﬁ_lq)](l —exp(—tp?/1g)). (4.IILY9)

For t < Tg, the sum is dominated by large p, for which the underlined
term changes the sign rapidly and its contribution becomes very small.
The remaining term is written by converting the sum over p to the
integral:

N N
1 1g21. 1.2 KND?
g(k, t)—Nldn!:dm exp[ % ln-m|b 32

X Idp ;15 cos(@)(l — exp(—tp?/ 'tR))] . (4.111.10)
0

The integrand has a sharp peak at n=m, so the double integral is
evaluated as

Tdanm =N T d(n — m). (4.II1.11)
0 (4] —

The final form is written as

12 7
gk, t)= du exp[—u — (Te)2h(u(Tit) %)) (4.111.12)
k*b? l
where
| 3 -—12; kb (4.111.13)
and .
_ 2 cos(xu) a 2
h(u) n!dx - (1 = exp(—x?)). (4.111.14)
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For T'xt >> 1, this expression is further simplified to

8(k, ) =g (&, 0) [ du expl~u — (T, *h(0))

= g(k, O)exp[ - \—-/—2; (I‘,t)m] . (4.111.15)

For the Zimm model, the structure factor can be obtained in the same
way if the linearization approximation***° is used. The result for the @
condition is

8k 1) = gk, 0) [ du exp[—u — (Tu)h(u(Tu)™)] (@.IIL16)

with
- ksT 3
L= gk (4.111.17)
and -
h(u) = % f dx cos;gru ) (1 = exp(~x*?*/V2)). (4.111.18)
0
For Tpt>>1,
g(k, t) = g(k, 0)exp(—1.35(Txt)*>). (4.111.19)

Appendix 4.1V Polarizability tensor of a Gaussian chain

Let a,g(r, N) be the average polarizability of a polymer chain consisting
of N units with its end-to-end vector being fixed at r. By symmetry,
a,p(r, N) is written as

aap(r, N) = A(rz, N)(rarp —%6.,51'2) (4.IV1)

where A(r?, N) is a scalar. Equation (4.IV.1) can be expanded with
respect to r:

aap(r, N) = (ao(N) + ax(N)P + . . . Y(rarg —38,57). (4.1V.2)

We shall show that ay(N) is proportional to 1/N, and a,(N)=a,(N)=
... =0 provided that (i) the statistics of the chain are Gaussian and that
(ii) the polarizability is additive.

The second condition is written as follows. Suppose that the chain is
divided into two parts each consisting of N, and N, units, then

aup(r, N+ N;) = J’drl dra,p(ry, Ny) + aap(re, Np)I®(ry, 1) (4.1V.3)



136 DYNAMICS OF FLEXIBLE POLYMERS

where ®(r, r,) is the equilibrium distribution of r, and r, under the
constraint that r; + r, is fixed at r. For the Gaussian chain, this is given by

d)(rl, &) = 6(’1 + rn-— r)‘l’(rl, Nl)ql(’h, Nz)/q’(r, Nl + Nz) (4.IV.4)

where
2 3P
2::Nb2) °XP( _2Nb2) ' (4.1v.5)

If we multiply eqn (4.IV.3) by e*"W(r, N, + N,) and integrate over r, we
have

&ap(k, Ny + No)P(k, Ny + N;) =P(k, Ny)&op(k, N)P(k, N)
+W(k, N &5k, N))P(k, N;) (4.1V.6)

Y(r, N)= (

where B
Wk, N)= exp(—Nb2k2/6) 4.1V.7)

and &,g(k, N) is a differential operator:

Gup(k, N) = —(ao— a1%+ N .)(513(—“-5% ~16., %) . (41V.8)

Using eqn (4.IV.7), eqn (4.IV.6) is written as

b? ) b?
exp(-6— KN, + Nz)) Gup(k, Ny + Nz)exp( KN, + Nz))

B2, . b2
- exp(? kle)afap(k, Nexp( - =k Nl)

2 2
+ exp(%- kzNz) &.p(k, Nz)exp( - % k2N2) . (41V.9)

For this to be true for arbitrary N; and N,, it must follow that

b2 2
exp(? kzN) &qp(k, N)exp( - % kzN) = NB,g(k) (4.1V.10)

where B,g(k) is a certain function of k. Substitution of eqn (4.IV.8) and
a straightforward calculation gives

4 4n72
2 Ne(kaky = 36,5k o) + (25

K- %sz)al(N) +... ] = NB,s(k).
(4.IV.11)

Comparison of the coefficients of the power of N indicates that this
equality is satisfied only when

ao(N) = co/N, a(N)=a(N)=...=0. (4.1V.12)
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Choosing the constant ¢, as Ay/b?, we have

A
@up(r, N) =30 (rtp = $6057)

= 7 r2>eq (raTs — éﬁaﬁrz) (4.1V.13)
which is eqn (4.215).
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MANY CHAIN SYSTEMS

5.1 Semidilute and concentrated solutions

The physical properties of a polymer solution depend on solvent,
temperature, and concentration. The solvents for polymers are broadly
classified into two categories, good and poor solvents. Good solvents
have strong attractive energy with polymers and dissolve polymers over a
wide range of temperature. In such a solvent, the net interaction between
polymer segments is repulsive (since they tend to contact with solvent
molecules rather than themselves), and the excluded volume parameter v
is positive and large. Poor solvents, on the other hand, are less keen to
accommodate polymers, and precipitate polymers when the temperature
is changed or the polymer concentration is increased. The excluded
volume v in such a solvent can be positive, zero, or negative, depending
on the temperature.

For the purpose of the discussion, polymer solutions in good solvents
can be divided into three regions: dilute, semidilute, and concentrated
(see Fig. 5.1).

A dilute solution is defined as one of sufficiently low concentration that
the polymers are separated from each other; each polymer on average
occupying a spherical region of radius R,. (Fig. 5.1a) In this solution, the
polymer—polymer interaction has only a small effect, and any physical
property is expressed as a power series with respect to the polymer
concentration p (weight of polymer in unit volume). Consider for
example the osmotic pressure II and the viscosity 7. In the dilute limit,
these are written as

P
M=—RT, (5.1a)
n=n,1+p[n)) (5.1b)

where R is the gas constant, M the molecular weight, T the temperature
and 7, the solvent viscosity. Equation (5.1a) is van’t Hoff’s law and eqn
(5.1b) is the definition of the intrinsic viscosity [#]. The interaction

among the polymers gives terms of order p?, so that eqns (5.1a) and
(5.16) become

n=RT(§+A,p2+. : ) (5.2a)

n=mn,1+p[n]+kup*nP+...). (5.2b)
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dc(x)

X
@ () ©

Fig. 5.1. Three concentration regimes in good solvent: () dilute, (b) semidilute,

and (c) concentrated. c(x) denotes the concentration profile along the dot-dashed

lines.

The parameters A, and k, are called the second virial coefficient and the
Huggins coefficient, respectively.

As the concentration increases, the polymer coils come closer and start
to overlap each other. Since the number of polymers in a unit volume is
PpN,/M the concentration p* at which the overlap starts is estimated as

P*Ny4

T%JtRZ 1. (5. 3)
Note that the concentration p* can be quite low. As R, is proportional to
M?", p* depends on the molecular weight as

p*a M= =M"% (for v=3/5). (-4)

Thus for large molecular weight, p* becomes quite small; e.g., for
polystyrene of M =10° p* is about 0.005g/ml (about 0.5% in weight).
Hence we can easily get a solution in which the molecules are strongly
overlapped, but still occupy a small volume fraction. Such a solution is
called semidilute.

A semidilute solution is characterized by the large and strongly
correlated fluctuations in the segment density such as we have in dilute
solutions. Although the fluctuations decrease with increased polymer
concentration, the semidilute solution still retains the same character as
critical phenomena in statistical mechanics, and presents the same kind of
problem as we discussed in Sections 2.5 and 2.6.}

If the concentration becomes sufficiently large, the fluctuations become
small and can be treated by a simple mean field theory. Such a solution is
called concentrated. As we shall show later, the cross-over concentration
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from semidilute to concentrated is estimated by

— v (Ms / NA)
==
where M; is the molecular mass of the segment. The high concentration
limit is the melt in which there are no solvent molecules.

We may thus classify the polymer solutions in good solvent into three
regimes:

(i) dilute; p < p*.

(ii) semidilute p* < p <p**,

(iii) concentrated p** < p.

* %k

(5.5)

It may be noted that this classification is conceptual: usually, the
crossover between various regimes is not sharp, and experimentally it is
often difficult to identify the cross-over concentration.

In a poor solvent, the situation is more complicated. When the
temperature is lowered, the excluded volume parameter v becomes
negative, i.e., the net force between the segments becomes attractive. If
the attractive force is strong, the polymers aggregate and phase separa-
tion takes place. The characteristic feature of the phase separation is
described by the theory of Flory’ and Huggins® and is shown schemati-
cally in Fig. 5.2.

The theory predicts that for large molecules, the critical temperature 7,

Tl}

b‘}

Fig. 5.2. Phase diagram of polymer solutions in poor solvent. The shaded area
denotes the biphasic region; the system at the concentration p in the figure will
separate into two phases of the concentration, p, and pg.
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becomes very close to © temperature:

O—-T.xM 72 (5.6)
and the critical concentration p, is small:
Pex M2, (5.7)

In the temperature region near to or less than the © temperature, it is
no longer valid to use a pseudo-potential, and the detailed structure of
the segmental interaction matters. For example, polymers in dilute
solutions collapse well below the © temperature due to the intramolecu-
lar attractive force.* The radius of gyration of a fully collapsed polymer
depends on the hard core radius b, of the segment, and will be written as

R:=Nb}, (5.8)

and the attractive forces play no part.

In the temperature region |T'—®|<©—T,, classification of the
solutions becomes involved since the properties depend on a subtle
combination of the chain length, temperature, concentration, and addi-
tional molecular parameters such as the third virial coefficient w for
segments (see eqn (2.90)), and the chain stiffness. Since the pioneering
work of Daoud and Jannink,” a considerable amount of work has been
done®® in this region. However, as both the theoretical results and
experimental results have not yet been settled and as the region is limited
to a small area in the concentration-temperature diagram, we shall focus
our attention only on good solvents in this book.

5.2 Gaussian approximation for concentration fluctuations

5.2.1 Collective coordinate.s;

First we consider static properties of concentrated solutions in equi-
librium. Let R,, be the position of the n-th segment of the a-th chain.
The equilibrium distribution function for R,, is written as a natural
generalization of eqn (2.95)

q“[Ran] N CXP[_(UolRa,,] + UI[RM])/kB T] (59)

where
3
Uo[R.n)/ kT = 2 2b2 (Ran — Ron—1)’ (5.10)

is the energy of the chain connectivity and

Ul[Ran]/kBT =%Z vé(Ran _Rbm) (5'11)
a,b

n,m
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is the excluded volume interaction, which includes both the intramolecu-
lar interaction @ =b and the intermolecular interaction a # b. Since eqn
(5.11) uses the pseudo potential, this model needs some alterations at
high concentration where the detailed chemical structure matters, but
here we will proceed using the simplest form.

Although the starting point is clear, theoretical development is not
easy since calculation of any average from eqn (5.9) involves a highly
nonseparable integration which is common to many body problems.
However, under certain conditions we can progress by using collective
coordinates.”'°

Instead of describing the problem in terms of R,,, we focus our
attention on the local segment density c(r) defined by

c(r)=2 8(r—R.,) (5.12)

and consider the distribution function W{c(r)] for c¢(r). This method is
effective if the physical quantiy under consideration is expressed by ¢(r)

For the mathematical development, it is convenient to use the Fourier
transform of c(r):

Cx = ‘l’ j dr exp(ik - r)c(r) = il; > explik - R,,] (5.13)
c(r)= Ek‘, cyexp(—ik - r)= (2::)3 f dkce " (5.14)

where V is the volume of the system.

The component c, is equal to the average concentration ¢, and does
not fluctuate at all, while c, with k # 0 denotes the fluctuation of the local
concentration.

A technical remark has to be made here. In the representation of {c;},
not all ¢, are independent of each other since ¢, and c_, are related as

Cx = C: (5. 15)

where c; is the complex conjugate of c,.

We shall choose those c; with positive k, values as the independent
components, and use the abbreviated symbol k >0 to denote the set of
the independent components. When the component ¢, with negative k,
appears in the subsequent calculation, it should be remembered that it is
cx. Thus for example

I= 2 CxC_g (5. 16)
k>0
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is the same as the sum

=3 3 3 ad (5.17)

kx>0 k,:—aa k,--—ao

which is expressed by the sum over the entire k space as
> cxc_x =3 crcx— 33 =132 cuch —ick (5.18)
k>0 k k

Now the distribution function of c, is given by
((cu) = [ 1 8Ran exp(~(UolRan) + Ui Run)) s T)
x [] é(c,‘ - %,Z exp(ik - R,,,.)). (5.19)

k>0
By use of the formula

6(r—r'>=%,§exp(ik-(r—r')), (5.20)

Ui[R,.] is rewritten as

UilRan)ksT == S, explik - (Ron — Ry)]
we G

- "2—"2"‘, (‘1,2 exp(ik .RM))(‘%I’% exp(—ik -R,,,,,)). (5.21)

If this is substituted into eqn (5.19), the underlined terms can be replaced
by ¢; and c_; because of the delta functions. Equation (5.19) is thus
rewritten as

W({ck}) = exP[‘%”% CkC—k]

X f [1 8R.. exp(=Us[R..) ks T)]] 6(c,, - %Eexp(ik ~Ra,,)). (5.22)
a k>0 a,n
Let Uy({cx}) and U;({ci}) be defined by

Un({ce)/ksT = =1 | T 6Re exp(~UnlRes/k5T)

x 1 6(c —%,2 explik *R,,)) (5.23)

k>0

U({c))/kpT = %’ v}k‘, CkCoi (5.24)
then
W ({ce}) = exp[—(Us({ci}) + Ur({ce})) k5 T]. (5.25)
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Calculation of Uy({cs}) is difficult and it is only possible to give the
explicit form as a series. A systematic method’ is described in Appendix
5.1. (Another method is described in ref. 11). Here we use the Gaussian
approximation (or random phase approximation), which is to say that the
distribution of c; is Gaussian, i.e., the free energy is written as

Uos({cx})/ksT = D, AoxCxC_x + higher order terms in ¢,  (5.26)
k

where Ay, is a constant to be determined. This approximation is justified
in the concentrated solutions where the density fluctuations are small,
while it is not adequate in the semidilute solutions.

To determine Aq, we use the fact that for noninteracting polymers
(v=0), (ckc—x) can be calculated exactly as a sum of the correlation
functions of independent Gaussian chains,

(cac-#)o = 1-80(k) (5.27)

where (.. .)o denotes the average for the state of v =0, and go(k) is the
scattering function of ideal polymers (see eqn (2.80)),

72N [ ( szkz) Nb?i? ]
On the other hand, for v =0, the distribution of ¢, becomes

Wo({ce)) <exp| - S Aucsc—e | = exp| 23 Aucrci]  (529)

k>0

(5.28)

which gives (see eqn (2.1.31)) ’

(cxc-x)o= (ckCi)o= Ioa . (5-30)
Comparing eqn (5.30) with eqn (5.27) we obtain A, as
| 4
An= . 5.31
o = 2egolk) 55
From eqns (5.24), (5.26), and (5.31) the total energy
U({cx}) = Us({ck}) + Ur({ce}) (5.32)
is obtained as
U({c)) ks T =~ 2 ( — v)c,c_,. (5.33)
For large k, the asymptotic form of go(k) gives
252
. +v=ﬂ+v. (5.34)
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This expression is also valid for small k because 1/cgo(0)=1/cN is
negligibly small compared to v in the concentrated solution. Thus for the
entire k values we have

252 2
U({cx})/ks _Y 2 (% + v)ckc_,, = %’ ; -l-bz—c (B + E cpe_x (5.35)

where
§ = (b*/12cv)” (5.36)

is called the correlation length.
The distribution function for ¢, is

W({ck})«exp[—ggl—"z—c(me-z)ckc-k]. (5.37)

We shall now examine some consequences of this expression.

52.2 Pair correlation function

From eqn (5.37), (cxc—x) is given by
(Ckc—k) ='l_ 2 212‘: -2
Vbi(k+§7)
whence the scattering function per segment is

12
bi(k*+ &%)

(5.38)

g(k) = (CkC &)= (5.39)

The Fourier transform of g(k) gives the pair correlation function:’

(eIe)) - =c[ s glhge™ "

(2m)®

(4nk*dk 12 sin(kr)
) 2x) bYK*+E7%) kr

=cC

3c
52 exp(=7/5). (5-40)
Equation (5.40) indicates the physical significance of &: & represents the
correlation length of the concentration fluctuation.

Experimentally, the correlation lcngth can be determined from the
behaviour of g(k) in the small k region:

0 2
g((k; 1+k%2,, for k—0. (5.41)
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The definition of this apparent correlation length can be extended to
dilute regimes, in which case &,,, gives R,/V3 (see eqn (2.72)). The
behaviour of &,,, is entirely different in dilute solutions and concentrated
solutions. In dilute solutions, &,,, =R, increases with the molecular
weight and the excluded volume, while in concentrated solutions &,,, = &
is independent of the molecular weight and decreases as a function of
concentration and excluded volume (see eqn (5.36)). The reason can be
easily understood from Fig. 5.1: once polymers overlap each other, the
excluded volume interaction tends to make the concentration
homogeneous.

The simple theory given above is valid only at rather high concentra-
tion or at small excluded volume, i.e., near the © condition. At both
these limits there are additional difficulties. At very high concentration
the precise form of the potential matters. Also, near the © conditions the
precise details of the interaction, in the sense of a cluster expansion
passed to the two-body term, can also matter. In both of these limits it is
possible to make an appropriate improvement,®’ and the resuits have
been found to be in good agreement with experiments.'>*

5.2.3 Osmotic pressure

The free energy A of the system is obtained from the integration of eqn
(5.9). It is convenient to take the system of non-interacting polymers
(v=0) as a reference state. The difference in the free energy 4 — A,
between the two states is

jn (SRM cxp(—(UO[Ran] + Ul[Ran])/kB T)

exp(—(A — Ay)/kpT) =
R, —Uy|R,, ) kg T
| 11 6R.., exp(~ UlRan)k T) 5.2

which can be rewritten as

exp(—(A — Ag)/kgT)

J i 0e(cs = B vk ) [ 108
X exp(—(Uo[Rzn] + Us[R.)) kpT)

f I dc,‘é(c,, - ‘1,2 expl(ik R,,,,)) f I1 6Ro, exp(~(UlRrl ks T)

| I dew exp(-(Un(tea) + Ultern)) ks T)
- (5.43)

| I dew exp(~Un((eah)/kaT)
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In the Gaussian approximation, the integrals on the right-hand side can
be performed rigorously (see Appendix 5.II). Given the free energy, the
osmotic pressure is calculated by

0A c 0
=50 =ksT(5) ~ 55 (4 — 4o). (5.44)
The result is’
V3 (cv)*?
= kBT<§ +uet - (c';z ) (5.45)

The first two terms are easily understood: the first term represents van’t
Hoff’s law (¢/N)kgT (c/N being the number of polymers in unit volume),
and the second term is the excluded volume interaction between the
segments. The last term represents the correction to the second term due
to the chain connectivity: i.e., the effect that the intramolecular excluded
volume interaction does not contribute to the osmotic pressure.

From eqn (5.45) it will be seen that as c— 0, the osmotic compres-
sibility (8I1/3c) becomes negative, which is of course incorrect. It follows
that the theory presented above is only valid if

32
vczz(c%— ie., czc"=%. (5.46)

This gives eqn (5.5). The situation ¢ <c** is described by the theory of
semidilute solutions.

Equation (5.45) indicates that as a result of the chain connectivity, the
slope in the log IT — log c graph is larger than 2, the value predicted by
the simple theory which disregards the correlation in the segmental
distribution. This effect of correlation exists also in semidilute solutions,
and as we shall see in the next section, the slope there is indeed larger
than two. Thus the present theory smoothly crosses over to the
semidilute regime. A theory which interpolates the two regimes in a more
explicit way has been given by Muthukumar and Edwards,'* and in the
forthcoming book by des Cloizeaux and Jannink."

5.2.4 Size of a single chain

In dilute solutions of good solvent, the size of a polymer is much larger
than that at the © condition due to the excluded volume interaction.
How does the polymer size behave in the concentrated solution? To
answer this question let us suppose that added to the concentrated
polymer solution is a test polymer of the same chemical structure and the
same molecular weight. If the conformation of the test polymer is R, the
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energy of the whole system is written as

Ul Ry, ()l ksT = Ulc(r)]/ksT + % S (R,-R,_,)
+ g nzmé(R,, ~R,)+vY c(R,).  (5.47)

The first term is the energy of the host polymer, which is given in the
previous section, the second and third terms are the energy of the test
polymer, and the last term denotes the interaction between the test
polymer and the host polymer. In terms of ¢,, eqn (5.47) is written as

Ut[R,, {cu}]/ksT = U({Ck})/kBT+ 2 (R, —R,_,)?

+53 6(R, ~Ra) +03 3 uexp(-ik - R,). (5.48)

The distribution function for R, is obtained by integrating over c,:

WIR,] = [ TT dew exp(-UolRy, (clllksT).  (549)

k>0

The functional integral over ¢, is carried out using eqn (2.1.30)
fgodc,, exp[—U({Cg})/kBT - vZ 2 i exp(—ik -R,.)]
[T dey exp| - 3, (125
k>0

+c,,v2 exp(—ik - R,,)

k>0 (Ckc—-k>
+civ exp(ik - R,,,))]
xexp| 3 3, (cac-u)v? expl-ik - (R, = Ry
= exp|5 S 5 (auc-u)v? expl-ik - (R, - -R.)| (5.50)
Hence

Y[R,] x exp[— -2%5; (R,—R,_)*-3> (R, - R,,.)] (5.51)
where
o(r)=vé(r) - ; (cpc_x)v%e %7 (5.52)
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Using eqns (5.36) and (5.38), we get

o(r)= v[é(r) - %; k2+——§_zexp(—ik . r)]

=] (2d:)3 exp(=ik )] 1- k’i_:‘-z]

- u(a(r) - %2). (5.53)

The potential ©#(r) denotes an effective potential between the segments of
the test polymer. The effective potential consists of a strong repulsive
part (v8(r)) of very short interaction range, and a weak attractive part
(—v exp(—r/E)/4nE?r) of interaction range &. In the length-scale larger
than &, these two parts cancel precisely: indeed from eqn (5.53) it can be
shown that

J' dri(r) =0, (5.54)

Thus there is no excluded volume interaction among the segments whose
mean separation is larger than &. This effect is called the screening of the
excluded volume interaction.

As a consequence of the screening, the distribution of the conforma-
tion of the test polymer becomes Gaussian. Indeed given the effective
excluded volume potential #1(r), it is easy to calculate the mean size of
the polymer by use of the method described in Section 2.5.® For
example, the straightforward perturbation calculation gives (see Appen-
dix 5.11I)

12vE

(R?) = sz[.l +— ] (5.55)

Note that the expansion coefficient (R%)/Nb* does not depend on N.
This is essentially different from the situation in dilute solutions, and
indicates the screening of the excluded volume effect. Flory'” first
conjectured that the conformation of a polymer in concentrated solutions
and melts becomes Gaussian, and the present theoretical calculation is
that given by Edwards.'¢

If eqn (5.36) and the temperature dependence of v (eqn (2.94)) are

substituted in eqn (5.55), the change in the size of the polymer in the
concentrated solution is written as

(R?)

L —lxpExp2c12« (1 - g)mc“’z (5.56
(R?)e T ' -56)
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The general aspect of this theoretical prediction was confirmed by
neutron scattering of labelled polymers,'® though a quantitative com-
parison needs more careful analysis of the other terms discussed in the
previous sections. Approximate formulae which interpolate the dilute
solution behaviour and the concentrated solution behaviour are given in
refs 14, 15, 16.

5.3 Scaling theory—statics

As already mentioned, the theory in the previous section becomes
inadequate in the semidilute region where the concentration fluctuations
are large. This problem falls into the class of critical phenomena of
statistical mechanics, and therefore there have been many calculations of
it based on the renormalization group (see the reviews'®>? for general
references). However, it is possible to get the main results using the
scaling arguments given in Chapter 2, and this is how it was first
approached by de Gennes et al.»*

Scaling theory considers how a physical quantity changes when we
group A segments into one. The transformation changes the parameters N
and b as already discussed in Chapter 2 (eqn (2.124)). In the semidilute
solution we have the additional parameter ¢, which changes from c to
c¢/A. Thus the rule of changes of the basic parameters is

N—NI/A, c—cla, b—bA". (5.57)

If we know how a certain physical quantity changes under this transfor-
mation, we can discuss the dependence of this quantity on those
parameters.

As an example, let us consider the apparent correlation length &,
defined by eqn (5.41). We can take the same line of argument as given in
Section 2.6.

(i) From dimensional analysis &,,,, is written as

Eupp = DF(N, cb?). (5.58)
(ii) Since &, is invariant under the transformation (5.57) we have
bAYF(N/A, cb®>A*>* =)= F(N, cb>). (5.59)
For this to be satisfied £,,, must be written ast
Eapp = N*BF(cb’>N*>*7Y). (5.60)

This is rewritten by using the radius of gyration in infinite dilution

t Here a single symbol F is used to denote various functions for the sake of notational

simplicity.
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R{ = N"b and the segment density c* at the overlap concentration

c* = NI(R®)* = N'*-3/?, (5.61)
as
Eapp = ROF(c/c*) (dilute and semidilute). (5.62)

This equation is valid in both the dilute and semidilute regimes.

In the semidilute regime, the functional form can be further specified.

(iii)) In the overlapped state of polymers, the correlation length &
(=E&,pp in this region) should be a function of the segment density ¢ only,
and be independent of N. (To see this, imagine that the polymers in the
highly entangled state shown in Fig. 5.1b are cut into halves. The
behaviour of the concentration fluctuation would not be changed by this
operation.) For eqn (5.60) to be independent of N, it must be written as

E=N"b(cb>N>""1) (5.63)
with
v
+@v-1x=0, ie, x=- . .
v+Q@Bv-1)x=0, ie., x 31 (5.64)
Thus
E= R‘(‘0)<c£*) x¢™VCV D =¥ (semidilute). (5.65)

Next we consider the structure factor g(k). Since g(k) is dimensionless,
and changes as g(k)— g(k)/A under the scaling transformation, it is
written as

g(k) = F(kb, N, cb?) (5.66)
with
F(kbAY, NA7Y, cb’A*Y"1) = A"'F(kb, N, cb?). (5.67)
Thus g(k) can be written as
g(k) = cb>N>*F(kN*b, cb>N**~1), (5.68)

or using eqn (5.60)
g(k) = c&3, F(kE,pp, c/c*) (dilute and semidilute). (5.69)
In the semidilute regime, g(k) must be independent of N, which gives
g(k)=cE’F(kg) (semidilute). (5.70)

Similarly it can be shown that the osmotic pressure is given by

CkBT

= N F(c/c*) (dilute and semidilute). (5.71)
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In the semidilute regime, IT will again be independent of N, so that eqn
(5.71) predicts

_ ckgT

Tl =2~ (c/e*)* D o™ (semidilute). (5.72)

To compare these results with experiments, it is convenient to express the
concentration by p (the weight of polymer in unit volume). Equation
(5.71) is then rewritten as

_PRT.
=31 Flelp®). (5.73)
In the dilute region, this must be expanded with respect to p
PRT P P\
H=—Mf-[l+a2;;+a3(;)] (5.74)

where a,, a; are some numerical factors. Comparing eqn (5.74) with eqn
(5.1), we have
a

A, =
2= Mp*

« M3 2o M5, (5.75)

In the semidilute region, eqn (5.72) gives

T 1/(3v-1)
n- -’% (;";) x p%, (5.76)

These results are confirmed by the experiments of Noda et al.” (see Fig.
5.3).

The radius of gyration of a single chain is also derived by the scaling
argument. By dimensional analysis and the scaling argument, one can
show that the radius of gyration must be written as

R, =R"F(c/c*). (5.77)

In the semidilute region, the statistical distribution of the chain becomes
Gaussian and R, must be proportional to N'2. This requirement gives

Rg = R§0)(C/ct)(1—2v)/2(1—3v) ochizc-lls. (578)

This prediction on the shrinkage of the polymer chains in semidilute
solution was confirmed by neutron scattering.*

Though the scaling argument gives only a qualitative feature of the
parameter dependence, explicit functional form can be calculated by the
renormalization group method.'®??* For example Ohta et al.* gives by &
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Fig. 5.3. Reduced osmotic pressure of poly(a methylstyrenes) in toluene at 25°C

is plotted against reduced concentration p/p*. Polymers of four molecular

weights ranging from 7.1 X 10* to 1.2 X 10° are shown. The slope of the full line is
1.32. Reproduced from ref. 22.

expansion
M /o1l 1 21n(1+X)]
RT(ap) 1+8[9x 2+ %

x cxp[% (}(+ (1-X)ln(1 + X))] (5.79)

where X is a parameter proportional to ¢/c* = p/p*, or is more explicitly
expressed by the second virial coefficient A,,

16
X= EAZPM' (5.80)
This prediction is in good agreement with the experimental result of
Wiltzigs et al.> Explicit calculation for ,,, was done by Nakanishi and
Ohta.
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5.4 Topological interaction in polymer dynamics

5.4.1 Entanglement effect

Having discussed static properties, we now consider dynamical problems
in many chain systems. Here we have to consider another very important
type of interaction which arises from the very nature of the polymer:
polymers are one-dimensionally connected objects and cannot cross each
other. A good way of looking at this is to imagine that the polymers have
no thickness, and no attractive force, like a mathematical curve in space.
Clearly the excluded volume of such a chain is zero. However, even such
chains can interact strongly due to the topological constraints that chains
cannot cross each other.

Consider two loops initially placed separately in space as in Fig. 5.4a.
If one wants to calculate the partition functions of such systems, one has
to exclude the configurations such as shown in Fig. 5.4b and ¢ because
such configurations are not accessible due to the topological constraints.
The net effect of this is that the effective interaction between the loops is
repulsive; the second virial coefficient A, is positive even if v = 0.%%

The topological interaction is also very important in the problems of
rubbers, in which the configurations of composite chains are severely
restricted by the topological constraints of other chains. This gives an
additional contribution to the elasticity of rubbers.*-!

For linear polymers, the topological constraints do not affect the static
problems at all since all configurations are accessible. However, the
topological interaction seriously affects the dynamical properties since it
imposes constraints on the motion of polymers. Indeed it is a crucial
factor in the dynamics of polymer solutions above the overlap
concentration.

O ©) &

()

Fig. 5.4. Two loops in various topological states.

t The topological constraints exist in the single chain problem, but the effect is generally
considered not to be sericus because the properties in dilute solutions are usually
dominated by the external modes (translation and rotation of the chain as a whole) for
which the topological constraints are not important. This conjecture is supported by the
scaling theory and results of a computer simulation;*? both indicate that the topological
constraints affect the numerical facter only, although the conclusion is not yet definitive.
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Fig. 5.5. Steady state viscosity at zero shear rate of polystyrene in toluene
is plotted against (a) concentration and (b) molecular weight. Reproduced from
ref. 66.

This has been well realized in the study of mechanical properties,
which become quite conspicuous above the overlap concentration.>®!

Firstly, the viscosity of polymer solutions increases steeply (roughly in
proportion to p*~°) above the overlap concentration, and becomes much
larger than the solvent viscosity. An example is shown in Fig. 5.5a.
Notice that for high molecular weight polymers, even at the concentra-
tion of only 10%, the viscosity is several orders of magnitude larger than
the solvent viscosity, which is about 0.01 poise. Such high viscosity is a
result of molecular entanglement in the state shown in Fig. 5.154. It can
be easily imagined that the viscosity in such a state will depend strongly
on the chain length. Indeed experiments indicate that at constant

concentration p, the viscosity depends on the molecular weight as (see
Fig. 5.5b)

7 x M* (5.81)

where the exponent x is about 3.4. This behaviour is rather universal,
independent of temperature, solvent and the molecular species (as long

as the polymer is linear and flexible), which indicates that the phenomena
are governed by the general nature of polymers.
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Secondly, the polymeric liquids show conspicuous elasticity. For
example, if one stretches a polymeric liquid (say chewing gum) quickly
and holds it, one will feel a restoring force which decreases with time. If
one releases the specimen before the force vanishes completely, it shrinks
like rubber. The characteristic time for such elastic behaviour to be
observed (i.e., the longest relaxation time 7., of the restoring force)
depends strongly on the molecular weight of the polymer in the form

T X M* with x=3.4 (5.82)

which again indicates that the relaxation of the molecular conformation is
extremely retarded by the molecular entanglement.

There is much experimental evidence which indicates the dominant
role of the topological constraints in the dynamical properties of
polymeric liquids, a comprehensive discussion on which is given in refs 30
and 31.

5.4.2 Rigorous approach

Although experimental results on the viscoelasticity of entangled poly-
mers were established quite early, theoretical explanation was not
successful for a long time. (Some of the early theories are reviewed in
ref. 31). This is due to the difficulty of handling the topological
constraints.

From the theoretical point of view, the topological constraints provide
a unique class of problems. This interaction is quite singular: for
example, in linear polymers its effect is null for static properties but quite
serious for dynamical properties. The interaction has no parameter which
characterizes the strength. Rigorous theoretical treatment of such inter-
action is quite difficult. This may be seen in a simple example.

Consider the problem of calculating the second virial coefficients A, of
the ring polymers shown in Fig. 5.4. The first step in such a calculation is
to find a mathematical expression which distinguishes the non-entangled
state (such as (a)) from the entangled state (such as (b)). How can we do
that? A way of doing it is to use topological invariants which remain the
same as long as the polymers do not cross each other. A classical quantity
found by Gauss is the integral for two loops:>

=g fardom{ (G2)x (G ) memy o9

where the integral is done over the closed contour of the loops 1 and 2.
The integral is 0 for the configuration (a) in Fig. 5.4, and 1 for (/) and
remains the same if the loops do not cross each other. (This can be
proved by using Ampere’s law in magnetism: the integral is equal to the
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number of times that the (directed) loop 1 passes through loop 2.)
However, the Gaussian invariant (5.83) is not enough to specify the
topological class of loops because, for example, the configuration (c)
gives the same value of I as the configuration (a). A better specification is
achieved by the use of Alexander polynomials,> which amounts to an
analysis of the order of crossing of the projections of the curves on the
surfaces,” but the expression becomes too complicated to be used for
analytical calculation.

Despite the difficulty, progress has been made in the static problems
(e.g., the calculation of A, of ring polymers®®™® and the rubber
elasticity*®*!), by using the Gauss integral as a principal index for the
topological class. Rigorous results can be obtained for the entanglement
between a polymer on the plane and a line standing on it,** and the
two-dimensional problem can generally be solved using Riemann
surfaces,*

In the case of linear polymers, the entanglement effect appears only in
the dynamical properties, and it appears at first sight one does not know
where to start. Edwards* suggested that the entanglement effect can be
described by the Smoluchowski equation,

v 3 ow U

E—E*SRM' H om * (kgTaRbm'FaRbm‘p); (5.84)
bm

because the mobility tensor M,,,,, is zero for the pair of segments which

are going to cross each other. To see how this works, consider the
one-dimensional motion of two particles, 1 and 2 (see Fig. 5.6). If we

X X
O O .
(@) x
Xo &
X=X

—-
X1
{b)

Fig. 5.6. (a) One-dimensional Brownian motion of two particles which cannot
cross each other, (b) phase space of the system.
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assume that the diffusion constant D; = kzTH;; is a function of |x; — x|
only, the Smoluchowski equation is written as

v 2} oW
i a—x'; D(0 ) D(O)—;
3 ¥ 9 oW
+a—xl- D(x,— xz)—+5—2 D(xz"xl) . (5.85)
Using
1
X =72'(x1 +x5), X2_\/2 (x1—x2) (5-86)
eqn (5.85) is rewritten as
8‘1’ ‘P
S~ PO+ D) S+ 5 DO -DE) T2, (58D

The underlined diffusion constant, which corresponds to the relative
motion of the particles, vanishes when X, =0, i.e., when x; =x,. This
guarantees that the flux of the representative point across the line x; = x,
is zero, i.e., the particles cannot cross each other. Notice that this
conclusion holds for any functional form of D (provided it is finite at
X, =0). An attractive feature of this approach is that it guarantees that
the equilibrium properties with the topological constraints are the same
as the ideal chains. However, rigorous solution of eqn (5.84) is not easy,
and approximate treatment such as the preaveraging approximation does
not give the correct molecular weight dependence for 7 and 7,,,x. At this
moment, this idea still remains to be explored.

5.4.3 The tube model

Though rigorous theory for the topological interaction is extremely
difficult, it has been shown that a highly entangled state can be treated by
an effective model, the tube model. This model assumes that due to the
topological constraints, the motion of the chain is essentially confined in a
tube-like region made of the surrounding polymers (see Fig. 1.6). This
model, originally proposed for the problem of rubbers,* offers a basis for
the dynamics of chains in a network,*’ which has been quite successful in
explaining many dynamical properties of entangled polymers.* We shall
give a detailed account of it in the subsequent chapters.

Though the tube model is successful, our present understanding of the
dynamics in entangled systems is still incomplete. Agreement between
theory and experiments is not yet complete as we shall discuss later.
More seriously, the tube model does not describe all aspects of the
dynamics: it describes properties which depend on a single chain
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dynamics, but cannot so far handle problems which involves the
collective motion of many chains. Progress can be made on aspects of this
problem, particularly in concentrated and semidilute solutions, as against
melts, and this we shall study in the rest of this chapter.

5.5 Dynamics of concentration fluctuations

5.5.1 Kinetic equation
In Section 5.2, it was shown that the Gaussian approximation for the
collective coordinates ¢, is quite useful for describing the static properties
of polymers in concentrated solutions. It is a natural temptation to
generalize this approach to dynamical problems. The central assumption
to be made in this approach is that the set of coordinates {c;} are good
variables for characterizing the state of the system, and that therefore a
closed equation can be constructed for their time evolution. This
approach is quite analogous to the critical dynamics for binary solutions
of low molecular weight,* where the dynamics of the system is described
by the phenomenological Langevin equation

a AU({c
gtck=§—l,u,%‘k})+ Te (5.88)
where U({c;}) is the free energy, L., are phenomenological kinetic
coefficients and r; are Gaussian random variables satisfying

(re) =0, (re(O)raAt')) = 2kp TLyg6(t = t'). (5.89)

In the polymer problem, the validity of this equation is not obvious
since the description of the polymeric system by {c;} disregards the chain
connectivity and, therefore, neglects the entanglement effect. However,
as far as the dynamics in the short time-scale is concerned, this will not be
a serious problemt since, as we shall discuss later, the topological
constraints are not important in the short time-scale dynamics. Indeed it
will be shown that the initial slope in the dynamical structure factor is
correctly described in this approach. In the long time-scale, on the other
hand, the validity of eqn (5.88) is not clear, and it may well be that the
theory has to be modified in future. Fortunately, many experiments
related to concentration fluctuations are concerned with the short
time-scale motion, so that it is worthwhile to pursue the idea in detail.

1 Here short time means that it is shorter than the reptation time 1, which will be discussed
in Chapter 6. For the phenomena which involve long time-scale, or large length-scale

motion of polymers (as happens in the problem of phase separation® and © regimes’"), the
present theory is not valid.
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Now for the polymer problems, U({c;}) has been calculated in Section
5.2.1. To determine L., we use the Langevin equation for R,, (see eqn

(4.42)).
3. SU[R,,]
57 Ren =% Huro (- +fom)

aRbm
__ 9UIR.)
2,:,, Horom *+ g+ lun (5.90)
where H,,;,,, = H(R,, — R,,,) and
Tan = bZ Heniom * fom (5.91)
”

whose time correlation function is
{(r,()) =0, {r, (5= (t")) = 2kgTH,p,0( — t'). (5.92)

Equations (5.13) and (5.90) give
d 1., OR,, .
5o 0= ik SR explik - Rur)

1 o
=‘_/ 2 ik - (_ [ — g}[::’:n] + ran)exP(ik 'Ra")' (593)

an,bm

Comparing eqn (5.93) with eqn (5.88), we have
1 o. :
(t) =7 3 ik - 1 (1)exPGK - Ra). (5.94)
From eqn (5.92) and (5.94), it follows that

(rk(t)rk‘(t')> =32 2 k- (ran(t)nms(t )) -k
X cxp(lk "R, +1k' * Ry,)) (5.95)
2 2kpTo(t —t"Ykk': H

V2 an,bm
X exp(ik * R,, +ik' - Ry,,)-

Using

'qq
"‘mbm J' (23[)3 Xp(lq (Ran Rbm)) (596)
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we have

(r(Ore(t')) = _260 —f)

dg k-k'—(k-g)(k'- Q)
k“T](Z y .q°

X 2;, expli(k +¢q) R, + i(k’' — q) - R,]
dg k-k'—(k-q) k' q)

= ~20(t~ ) T s - CoreCarme
(5.97)
From eqns (5.89) and (5.97) we have
dg kK- (K Q) 5.98)

L =— C -
“ITTlem T T g brafe
Equations (5.88) and (5.98) give a nonlinear equation for c;. To proceed
further, we use the preaveraging approximation, i.e., replace L. by its
average in equilibrium

_dg k-k'— (k- 6 (k- 4)
ka'_) (ka'>cq == (2.75')3 n:q ) ( k+ k’ —q)eq
(5.99)
Since (Cr+qCurmgleq i given by (c/V)8,_8(k + q), {Luu)eq is Written as
(LukYeq=Os-sLy (5.100)
where
dg k°—(k-9)°
L¢= V (2::)3 i’ gk + q). (5.101)
Therefore the Langevin equation becomes
3 o ty= -1, 2Uded)
5 K1) = o, 17 Wl2). (5-102)

The equivalent form of the Smoluchowski equation is

3 W AU{e))
‘I‘({ck}) 2 L,,[kg 8c_,,+‘p ac_: ] (5.103)

In the Gaussian approximation, U( {c,}) is given by

U({ex}) ——ks 2

(k) ~—— C4C - (5.104)
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Thus the Langevin equation (5.102) becomes

aaf Ck = _chk + rk(t) (5. 105)
where
14 Ly

= . kBTg(k) (5.106)

or using eqn (5.101)

dg gk +)k°—(k-§)°

I,=kgT J’ 5.107
=T Gy k) nd G.107)

Equation (5.105) is the basic equation for the dynamics of concentration
fluctuation. We now study the consequence of this equation.

5.5.2 Dynamic light scattering

Equation (5.105) is a linear Langevin equation which has been studied in
Section 3.5. The time correlation function {c.(¢)c_,(0)) is thus easily
calculated as

(cx()e_(0)) = {crc—p)exp(—Tyt). (5-108)
Hence the dynamical structure factor is

gk, 1) =~ <ck(t)c—k(0)> = g(k)exp(—Tx). (5.109)

In this approximation, the decay of g(k, ) is single exponential.

Note that T, given by eqn (5.107) is precisely the same as the exact
initial decay rate given in Chapter 4 (eqn (4.110)). Thus eqn (5.109) is
exact for 1 — 0. The explicit form of T, is evaluated from eqns (5.39) and
(5.107) (see eqn (4.111)*) as

_ k,,TT 1+ K28 [k2+q ‘k+q ]
= T
— kgT 2
= e EF ) (5.110)
where
F(x)-§1+x (x + (x* — Dtan~'(x)). (5.111)

The function is plotted in Fig. 5.7.
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Fig. 5.7. F(x) =Ti/D .,k is plotted against x = k&.

The expression is simplified in the two limiting cases
(i) For x >>1, F(x)=3ax/8, whence,

_keT 4
Iy = lﬁmk , KE> 1. (5.112)

This is precisely the same as eqn (4.113). This must be so since in the
region of kE>>1, the dynamics is dominated by the single chain
behaviour. The condition of k5> 1 is not easily attainable by light
scattering, but the result has been confirmed by neutron scattering.>?

(i) For x «1: F(0) =1, so that
_ ksT
67n,&

The k dependence of I is again the same as in dilute solutions (eqn
(4.99)). In fact this k dependence holds quite generally in the small &
region, for consider the Taylor series expansion of I', with respect to k.
In the isotropic state, the most general form is

rk=a0+alk2+a2(k2)2+. c b e

Sit}ce [y must vanish at k=0, a,=0, whence the above equation is
written as

T K kE<«L. (5.113)

=D, k> (k—0). (5.114)

’{‘his defines an apparent diffusion constant D,,,, for the entire concentra-
tion region.
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In dilute solutions, it was shown that D, agrees with the self-diffusion
constant defined by

Do = lim ((Ro()) - Ro(0))) (5.115)

where R is the position of a test polymer. On the other hand, in
concentrated solutions, eqn (5.113) indicates that D, is given by">

kgT
6xn.§

which is called the cooperative diffusion constant. It should be noticed
that D ., has no relation to Dg. Indeed D should decrease with
concentration (because of the molecular entanglement), while D,
increases with the concentration. The increase of D, With concentra-
tion results from the fact that the restoring force for the concentration
fluctuations is larger at higher concentration.

The concentration dependence of D, is obtained from eqns (5.36)
and (5.116):

Dcoop = (5.116)

D co0p * ¢'? (Gaussian approximation). (5.117a)
On the other hand, in the semidilute regime, use of eqn (5.65) gives
D coop X ¥, (5.117b)

From experiments, the exponent in D, *c* has been found to be
betwggn 0.5 and 0.75°*57 and this is discussed in detail by Schaefer and
Han.

It must be mentioned that although the behaviour of the dynamic light
scattering in the short time-scale is well understood, theory is still lacking
for the behaviour in the whole time-scale. Experimentally it has been
observed®®®' that in some systems the structure factor does not decrease
in a single exponential manner and has a long tail. The long time-scale
behaviour is considered to be related to the topological interaction, but
quantitative theory is not yet given.

5.5.3 Form birefringence

As mentioned in Chapter 4, the birefringence of polymer solutions has
two origins: the intrinsic birefringence which arises from the orientation
of polymer segments and the form birefringence which comes from the
anisotropy in the correlation of the segment density. In dilute solutions,
the relative contribution of each of these terms depends both on polymer
molecules and solvent molecules. In concentrated solutions, the form
birefringence decreases with increasing concentration,® while the intrin-
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sic birefringence increases steeply like the viscosity. (Note that the
intrinsic birefringence is proportional to the stress (see eqn (4.238).) This
leads to an important relation called the stress optical law® which states
that the stress and birefringence are proportional to each other. Detailed
discussion of this relationship is given in Chapter 7. Here, as an
application of the Langevin equation (5.105), we shall calculate the form
birefringence and show that it actuaily decreases with the concentration.
According to eqn (4.237), the form birefringence is given by

on\? 1
nh=23(5) Gy | hllokis ~10p100)  (5.118)

where g,(k) is the (static) structure factor at time ¢,

80y = (c)e_u(0). (5.119)

To calculate g/(k), we first consider the Langevin equation under the
macroscopic velocity field

Ua(f, t) = Kap(t)rp. (5. 120)
The macroscopic velocity causes a flow of c(r, 1),
)
c(' oelr, 1) | =-Z x(t) re(r, 1), (5.121)

The Fourier transform of which gives the drift for ¢,(7) as
- c,(r)} =k-x(t)- c,(t) (5.122)

Adding this to eqn (5.105), we have the Langevin equation in the
presence of the velocity gradient,

g-c,(:)a L) @)tk K@) el (512)

The equation for g,(k) is obtained from eqn (5.123) as

s =2 [ (22 )+ (i F2Y))

= =2l g.(k) +— [(fk(‘)c—k(t)) + {e(t)r-u(2))]

+ k- K(z) - g,(k) (5.124)
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The underlined terms can be calculated in the same way as in eqn
(4.141), and gives 2k TL,. Thus, using eqn (5.106) we have

"8:(’()—-2&(8:(") 8eq(K)) + K - X(7) - g:(k) (5.125)

where g (k) is the equilibrium structure factor. Since eqn (5.125) is a
first-order differential equation, it can be solved by a standard method, ¥
but here we consider the simple case of x(r) small and independent of
time. ,
The steady-state solution of eqn (5.125) is written as
8:(k) = geq(K) + g1(K) (5.126)
with
1 3 Kapkaks
g:(k)= k K- geq(k)- oT, k— % g,q(k) (5.127)

Substituting this into eqn (5.118), we have

k. k
@ = 2 ( )(2:;)3 f dk(k k5 — 1a¢ﬁ)——*‘—k——geq(k) (5.128)

The integral over the direction & can be calculated by using

4—1; J dkk, ks =16,, (5.129)

Zl;t- I dﬁkakﬁéu kv = 1%(60861“ + ‘Sduéﬂv + aﬂaﬁl‘)’ (5'130)

The result is written as

with
__c(on 519
M= ( 8c) j A == e, (5.132)

t Let F,4(1, t') be the solution of the equation

3 , ,
Epcﬂ(" t )‘ Fq;(‘: t )‘ﬂu(l)

with the boundary condition F,4(¢, ) = 8,4, then the solution of egn (5.125) is

4
L .
8.0 =2k [ o exp| <2 T Lt
— - F ol
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In semidilute solutions, I’y and g.(k) are given by the following scaling
form (see 5.3 and 5.6):

L= TR RRKE),  gul) = CERKE) (5.133)
Equations (5.132) and (5.133) give
cE ¢
A =1, 5Tn (—) (5.134)

If 3n/dc is regarded as independent of concentration, A7 depends on the
concentration as

AQ x 28 g™V (5.135)

which decreases with increasing concentration.
On the other hand, for concentrated solutions, substitution of eqns
(5.39) and (5.110) gives

1 Zg)% (an) n, 11 (an)
Ml "’k,,r(b n\c) kyTvn\oc (5-136)
which also decreases with concentration since 9n/dc decreases with

concentration.

Therefore in both the semidilute and concentrated solutions, the
contribution from the form birefringence decreases with the concentra-
tion. Experimental results are summarized in refs 62 and 63.

5.6 Scaling theory—dynamics
The dynamical scaling law discussed in Section 4.3 can also be used for

semidilute solutions.'”* The hypothesis is that any physical quantities
characterizing the dynamics satisfy the scaling transformation

A—> A (5.137)
when the basic parameters are changed as
N—NIJA, b— bAY, c—>cl/A. (5.138)

It is worthwhile to ask whether dynamical scaling is valid in a system in
which the topological constraints are important since it is well known that
topology is extremely dimension dependent for example, vorticity is
conserved in two dimensions, not in three dimensions; knots exist in
three dimensions but not in four dimensions, etc. Such effects do not
appear in the renormalization group calculations which are quite con-
tinuous in variation of the dimensionality of the system. On the other
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hand, one can argue that since the topological constraints introduce no
new length-scale, it would not upset the scaling arguments; rather the
scaling argument would give a common restriction on the theoretical
results for systems both with and without topological constraints (the
latter of course being a hypothetical system in which chains can pass
through each other like phantoms.) Here we shall take this viewpoint.
Various experimental results are quite consistent with the scaling
assumption in good solvents, though the validity is not yet established in
© solvents.”!

As an example let us consider the apparent diffusion constant D,
measured by dynamic light scattering (see eqn (5.114)). First we use a
dimensional analysis. The relevant parameters in the problem are b, c,
N, kpT, and n,, s0 D, is written as

ksT
Dy = b —— F(cb? N). (5.139)
This must be invariant under the transformation (5.138), whence
—F (cb® N)= F(cb3/13'“ N/R) (5.140)
which leads to
D,,= kT F(ch®N71+3) (5.141)
7 nNb ' '

Using the diffusion coefficient in the dilute limit D ~kzT/N*b and
c*=N/(N*b)?, eqn (5.141) is written as

D,,, = DQPF(c/c*) (dilute and semidilute). (5.142)

This equation is valid both in dilute and semidilute solutions. Unlike with
dilute solutions, the scaling argument does not predict molecular weight
dependence explicitly. (This must be so since one can derive the same
formula for the self-diffusion constant Dg. Further information is needed
to distinguish the functional form of D,,, from that of D;.) If one
assumes that D, is independent of the molecular weight, then one has

kBT k_BZ o ¥4
nsb n&

which agrees with eqn (5.1175). On the other hand, D depends on the
molecular weight. In the next section we shall show that D « N~2 by the
tube model. For this to be written as DPF(c/c*), D; must be written as

kgT
n:N vb(C/C t)(Z— v¥{(3v—-1)

Dppp =

(cb?)*v D = (5.143)

DG == o« N~2c~74 (5 . 144)
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which decreases with concentration. The self-diffusion coefficient in dilute
and semidilute solutions has been measured by forced Rayleigh
scattering.** The result is shown in Fig. 5.8, which includes the data of
D .0p and displays the different concentration dependence of D and

D co0p-
Likewise the viscosity # of the solution is shown to be

n =nF(cic*). (5.145)

Again, the molecular weight dependence is not determined by the scaling
argument alone, but eqn (5.145) predicts that if n/7, is plotted against

10‘6_—
L 3
~ f
"% u
Ng' o
d
3 100
S 7 E
- +
O
X = 598000 v,
. Y =754000
10°F ® from ORS. .
i V\
10"0 L gl Lol ool
107 107 107 10°
Weight fraction of polymer

Fig. 5.8. The apparent diffusion constant D,,, obtained by the dynamic light

scattering® and the self-diffusion constant D; obtained by the forced Rayleigh

scattering™ of the chains for four different molecular weights. Reproduced from
ref. 64.



172 MANY CHAIN SYSTEMS

c/c* = p/p*, then the viscosity curves of various molecular weight can be
superimposed. Such superposition had been known prior to the scaling
theory.®* If one uses p*[n] = constant, eqn (5.145) can be rewritten as

n=n,F(p[n]). (5.146)
This form also has been established experimentally for a long time.®

5.7 Effective medium theory

5.7.1 Failure of the scalar field description

The collective coordinate formalism given in Section 5.5.1 is not capable
of describing the whole aspect of polymer dynamics. For example, the
quantities which are related to the orientation of the bond vector
JoR,/on, such as stress, birefringence, and electric displacement, are not
expressed by {ci(¢)}, and therefore cannot be dealt with in this
framework. This is in contrast to the critical dynamics of binary
solutions* in which the dynamics is entirely specified by an equation of
motion for the concentration fluctuation. To discuss the orientation
dynamics of polymers, other collective coordinates are needed. A
possible collective coordinate is*®

Cap(t)= %,Zn cos(‘%)exp(ik ‘R,,) (5.147)

which can describe orientation of bonds. For example, the tensor

SR e OR
=)
‘,,Z,, < dn dn (5.148)

is expressed as

P_ﬂ)’@& 30-2) 4
,,_Z,(N 3k, kg /| (5.149)

However, the usefulness of such coordinates has not yet been fully
worked out.

An alternative idea proposed by Edwards and Freed™ is to consider
the motion of a single chain in an effective medium which includes the
effect of the other chains. The property of the effective medium is
determined self-consistently from the single chain dynamics. Though this
method fails to describe the entanglement effect appropriately, it
indicates an important aspect of the hydrodynamic interaction in the

concentrated system, which is the screening of the hydrodynamic
interaction.
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5.7.2 Hydrodynamic screening

The concept of hydrodynamic screening is seen if one conmsiders the
velocity field created by a point force in a fluid (see Fig. 5.9). If the fluid
is a pure solvent of viscosity n,, the velocity field v(r) is long range,
decreasing like 1/7,r as predicted by the Oseen formula. On the other
hand if there are polymers in the fluid, the situation is different. On a
small length-scale, the velocity profile will still be like 1/,r since it is not
disturbed by the polymers. However, on a large length-scale, the velocity
profile will obey the macroscopic hydrodynamics, so that the velocity
must decrease like 1/nr, where 5 is the macroscopic viscosity of the
solution. If n > n,, the velocity field falls quickly and the effect caused by
the point force becomes very weak beyond a certain characteristic length
&y called the hydrodynamic screening length (see Fig. 5.9). In such a
situation, the hydrodynamic interaction becomes negligible between

WY
\

¥4

L

-

X F ext

@ (®)

v, (r) §

{a) pure sofvent

{b) polymer solution

~Y

©

Fig. 5.9. (a), (b) Velocity profiles caused by a point force in a pure solvent and a
polymer solution. (c) The velocity v,(r) on the axis shown in (a), (b) is plotted
against r.
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segments whose distance apart is larger than &4. This is called the
hydrodynamic screening. As a consequence of the hydrodynamic screen-
ing the dynamical behaviour of a single chain becomes Rouse-like as
against the Zimm-like behaviour in dilute solution.

Though the idea of hydrodynamic screening is easy to understand, the
actual formulation needs somewhat elaborate methods. In the following,
we shall explain the method using the crudest approximation. The reader
who is interested in a complete form of the formulation is advised to see
the original papers.'®7%72

5.7.3 Effective medium theory

First let us consider how the velocity profile caused by a point force is
affected when a small number of polymers are present in solution. For
simplicity we consider the steady state in the velocity field, though this
assumption is not essential.”"” Let F,,, be the point force acting at the
origin. For pure solvent, the velocity perturbance is given by

vo(r) = H(r) - Foy (5.150)

where H(r) is the Oseen tensor given by eqn (3.106). By the Fourier
transform,

Uy = I%(r)exp(& . r). (5.151)
eqn (5.150) is written as
I — kk
Yo = e Fox. (5.152)

Our problem is how this field is affected by the polymers. In principle the
answer is given by solving the Smoluchowski equation

Sy [ S o (ko 3+ ¥ 3 ) ~wiRa¥] =0
| (5.153)

The hydrodynamic interaction is included in H,,;,,, = H(R,, — R,,,,). f ¥
is obtained for a given vy(r), the average velocity field is calculated as

b(r) =u(r) + 2 X (H(r - Rom)  Fom) (5.154)
where
F)
F,,=- R (ksTIn ¥ + U) (5.155)

and the average (...) is taken for the distribution function ¥.
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Now it is difficult to solve the diffusion equation (5.153) which includes
polymer—polymer interactions. So we first focus our attention on a
particular polymer, which we shall call the test polymer, assuming that
the velocity field created by the other polymers is known. Let #,(r) be
the velocity field created by the external force and the polymers
excluding the test polymer, i.e.,

0,(r) = vo(r) +b2 2 (H(r—Ry,) - F,,). (5.156)
The effect of the test polymer is solved by the Smoluchowski equation for
the single chain:

5;—-[&,,,,,,-(%7" i‘p +W R )] Z — [0(Ran)¥] =0,
A (5.157)

The velocity perturbation created by the test polymer is then calculated
by

60,(r) =2, (H(r —R,,) * F...). (5.158)

Since 81,(r) depends on #,(r) linearly, it must be written using a spatial
response function Z(r),

ou,(r)=— -:; I dr'Z(r—r')o,(r"). (5.159)
Equation (5.156) is then written as
U,(r)=vy(r) + ; O, (r) = vo(r) — 11’2 j dr'E(r —r')o,(r'). (5.160)

Now we assume that the perturbation 69,(r) is not large, and replace
U,(r) and ©,(r') by v(r) and ¥ (r') respectively:

v(r) =v(r) — %}% f&'&(r -r)o(r)

= w(r) —% f dr'E(r — r)o(r) (5.161)

where c¢/N is the number of polymers in unit volume.
Equation (5.161) is easily solved by the Fourier transform as

(k) = —'c"’*———=n(k) +Fog
1 +ﬁ5(k)
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where
A(k) = - kk (5.162)
n,k2[1 +}%E(k)]
and
2(k) = j drE(r)ek ", (5.163)

The function H(k) represents the effect of the point force in the presence
of the polymers. Comparing eqn (5.162) with eqn (5.152) we may
interpret

ealk) = [ 1+ 2K | (5.164)

as an effective viscosity of the polymer solution on the length-scale of
1/|k|. The macroscopic viscosity is given in the limit of k— 0 as

(5.165)

n =m[1 +§E(k)]

So far we have been considering the dilute solution. This allowed us to
use the Oseen tensor H(r) in solving the single chain problem, eqn
(5.157). In the concentrated solution, however, the hydrodynamic
interactions among the segments are affected by the surrounding poly-
mers. Thus we have to replace H,..» in eqn (5.157) by the effective
interaction H,,,,, which is derived from H(k) given by eqn (5.162).

dk
@x)’

k=0

Hurar— o = AR = Ra) = | 73—z xplik - (R — Ram)ACR)

(5.166)

This gives a closed equation for the effective hydrodynamic interaction.

5.7.4 Example

As an example, we consider a solution in © condition. For simplicity of
notation we omit the suffix a to denote the quantity of the test polymer.
Since the general solution of eqn (5.157) is involved, we use a crude
approximation: we assume that in the velocity field ¥(r), the test polymer
behaves as a rigid chain, and moves with constant velocity V (the
rotational motion being neglected for simplicity.). The equations deter-
mining V are

Vv=>H,, F,+9R,) (5.167)
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and > F,=0. (5.168)

Equation (5.167) indicates that the fluid velocity at R,, must be V and
egn (5.168) represents the condition that the total force acting on the

polymer is zero.
To solve the equations we use the preaveraging approximation

o= (o) = o = [ 55 (explik - Ry = R o (R).  (516)

From eqns (5.162) and (5.169) it follows that

2 1
3 2 (exp(lk * (Rn - Rm))) . (5170)
Cry3nk < 2y )
N
Equations (5.167) and (5.168) then give
F,=- L.v(R,) (5.171)

where
mn = E-lmn_ };_lm‘ﬁ—l mj E_l i | 172
b = 6™ = (SE ™) /(S E). :172)
Thus the perturbed flow is given by eqns (5.158) and (5.171) as
ov(r) = —2"; (H(r—R,) - {ua®(Ry)) eq

--3 j dr’ f AP (H(r — 1")8(r" — Rp)S(r' = Ry))eqbomn * B(r)

=3 [ar [ar e (3~ RO ~ ) (P,

(5.173)
Comparing eqn (5.173) with eqn (5.159), we get

2(r) = VZ f dr’

6, |, 77 (80" ~ R)S(R)) csbm  (5.174)

or in Fourier transform,

_ ) 2 )
Z(k) = j dre "B() =3 " 3, (explik - (R~ R)lom:  (5.175)

Equations (5.170), (5.172), and (5.175) give a nonlinear equation for
2 (k).

To proceed further, we use the diagonal approximation for the normal
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coordinate representation of 4,,,

A = 20 ( = )cos(me) (5.176)
where
ﬁ;%cos(%vﬂ)cos(l%m')ﬁm. (5.177)
In this approximation, eqn (5.172) gives
oS peo ).

(Note that the term of p =0 is omltted from the summation.) Thus in the
© condition, eqn (5.175) becomes

2 . _ 11 prn prm
20 =35k 3 exp(~46%* I = ml) - cos( )cos(T)

3, pimn
The sum over n and m are calculated as in eqn (4.52) (5.179)

chos(p ;n)cos(p J;, )exp( ib%k? |n — m|)

o0

N
= I dn f dm' cos(5’7\131'—")c0s(l—;:7r (n+ m’))exp(—%bzk2 Im'|)
0

NG romm ) N 2(b%36)
=3 _Ldm cos( N )eXP( bk m') =3 Ny + e
(5.180)

Then

b* i 1 1
In,N ;2 (pr/N)* + (bzkz/6)2
Similarly, 4, is calculated from eqns (5.170) and (5.177),

E(k) = (5.181)

_1 2

~2.§:.f @n),, k2(1+ _(k))

X exp(—3b%k? |n — mI)COS(p;n)ws(Ime)
1 [ dk 2 2(b%k>/6)
2N J 2n)?

3 ,k’( 1+ 52 (k)) (prIN)* + (b%k?/6)*
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i.e.,
. b [ dk 1 1
b = 50N | @r) 1+ (CIN)E(R) prINY: + GRI6)

Equations (5.181) and (5.182) determine Z(k). Since this is a nonlinear
integral equation the general solution is quite hard to obtain,” but in
special cases, the characteristic results can be discussed. Without going
into the detail, we quote the main results.

(i) In dilute solution, eqns (5.181) and (5.182) can be solved by
expanding Z(k) with respect to c:

E(k) = Eo(k) + cE, (k). (5.183)

(5.182)

The first term gives the intrinsic viscosity [n] and the second term gives
the Huggins coefficient (see eqn (5.2)). The result is

3 )
and
Jt3 © s -2
k,,=?(p21p ) =0.757... (5.185)

Equation (5.184) is larger than eqn (4.149) by a factor V2. Equation
(5.185) is slightly larger than the experimental value which is between 0.4
and 0.6.”° Thus the numerical factors differ by about 50%, but this can be
improved by removing the rigid chain approximation used in the
calculation.

(ii) Given the effective hydrodynamic interaction, one can calculate
the relaxation time 7, for the normal mode as

T, = ti"’p‘m(l +Ac(%) - 4. ) (5.186)

where z{” is the longest relaxation time in the dilute limit (c— 0) and yu is
about 0.5 in © condition. Equation (5.186) explicitly shows that the p
dependence of 7, changes from the Zimm-like (7, x p~>?) to Rouse-like
(7, < p~2) as the concentration increases. This result has been compared
with experiments on dynamic flow birefringence.” i

(ili) At higher concentration, over a wide region of k, H(k) is
expressed as™

I —kk
(k% + Ex°)

H(k) = (5.187)
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or in the r spacet

H(r) = exp(—r/&Eg)In,r (5.188)

which explicitly shows the screening of the hydrodynamic interaction.
The length &y is called the hydrodynamic screening length, and given
bylo

£y = 2/mch?. (5.189)
In this regime the steady-state viscosity is obtained® as
C2b6
n = 7],(1 + -2TN) (5.190)

This again indicates that the molecular weight dependence of the
viscosity becomes Rouse-like (n « M) for high concentration.

Appendix 5. Transformation to collective coordinates
The free energy U, is formally calculated from

exp(—Us({ca))/koT) = [ TT 6Run I 8] cu — 5 explik - R |
a k>0

X cxp(— UO[RM]/kBT). (5.1.1)

From the definition of the complex integral given in eqn (2.1.28), it is
shown that

,‘I;IO(S(CI: Ay) = f( )exp( 2 (cx— Ak)¢—k) (5.1.2)
where ¢_; means ¢,*. Using this, eqn (5.1.1) can be rewritten as

exp(~Un({c))/kaT) < [ T1 dgu[ T1 6R.,

k>0

- i .
X exv(lz b-ru— 2 ¢—x expl(ik - Ran))
k+0 k+0

a.n

X exp(—Up[R,n)/ ks T). (5.1.3)
To evaluate the integral on R,,, let
p(r)=—- 2 ¢ " (5.1.4)
Vifo

¥ Note that eqn (5.188) is not correct for » > &, since the asymptotic behaviour of H(r)
must be 1/nr, but the important region of integration in (5.181) and (5.182) is not this
region, so (5.187) is a good self-consistent solution.
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Then eqn (2.46) gives
3 T (dR,,\?
(R exp| S R 533 [an(G2) | = [ararGee, v, M 19D
" 0
where G(r, ', N; [¢)) satisfies
3 b?

|- V- 90| 7, Ni (8D =8¢ —r)6).  (5.15)

Thus
exp(-U{)/ksT) = [ TT dgwexs|iS, 6-sca]
k>0 k+0

Ny

x [ f dr|dr'Ge, r, N [¢])] (5.16)

where N,=cV/N is the total number of polymers in the system.
Equation (5.1.5) can be solved in a power series of ¢ as

N
G(r,r', N;[¢])=Go(r—r';N) + Idnl
0

N n
X fdrlGo(r— r1;N —n1)¢(r,)Go(r1 —r';nl) + fdn,fdnz
0 0

X fdrljdrzGo(r —n, N — n,)¢(rl)G0(r, — BN - n2)¢(r2)Go(r2 - r'; nz)
+.... (5.1.7)
Using the relation

fero(r—r’;N)=1

we have
fdrfdr'c(r, ¥, N;[$]) =V +der¢(r)+J;dn,£dn2 dr,

x [ (R)$EIGn ~ rsm = m). (5.18)

Using eqn (5.1.4) and the definition of g.(k) (see eqn (2.70)), this is
written as

[ar[arcer viiop=v][1- X 3 tudge®)]  6.19)
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Thus
exp(~Uil{eah/kaT) = [ T dgu exp[ 13, ¢

k>0
+ N, 108(1- 73 5, dud-aal®) | (5110

Assuming that the fluctuation in ¢, is small, we expand the logarithm and
evaluate the integral over ¢,:

rhs= | [] d¢, exp[ 2 ¢ —xCi — 2 ¢k¢—k80(k))]

k>0 k>0

[T deu exp| 3, (idics +iduci — 5 ut-sgo®) |

k>0

_ _ Veger
= exv[ gocg 0 (5.1.11)

which gives eqn (5.31).

Appendix 5.I Osmotic pressure in concentrated solution
Using the formula in Appendix 2.I, we have

f A1 dea °"p( VL cg(k)

S ckCZ‘)
exp(—(A — A)/ ks T) = exp| — = vc?

> I tl;lodck exP( Vk2>:0 o(k) cka)

= exp| -5 v | I (ko)
. =exp:—%,vc + 3410 (go((k)))] 5.IL1)
(A—Ag)/kyT = Z ve? +§ oy f dk Io g("2 :f_z). (5.11.2)
The osmotic pressure is thus given by
"”‘BT=§‘8“a——vA°’ o
-N* 12_162 ~2 (2::)3 f d"[ ( :25_2) e +V§-2 azf:]
=s+ %8—5 Gy ] dk4:rk2[log(1 + k21§2) - +}c2§2]. (5.11.3)
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The underlined integral is performed by the integration by parts:
2 - 39
Id"x ['°g(1+x) 1+x] fdxgx o

1 1 b 1
X [log(l + ;5) - +x2] =% (19

Hence

1
[1=ksT [N 26 24::;3]' G.13)

Appendix 5.I1 Perturbation calculation of (R?)
Let {...)o be the average for the ideal chain and U, be defined by
U,=%> 9(R,-R.,,) (5.111.1)

then the perturbation method described in Appendix 2.1II gives
(R*) = ((Ry — Ro)*)o[1 + (U1)o] — ((Rn — Ro)*Un)o. (5.111.2)
The first term gives

((Ry—Ro)*)o[1+ (01>o] =Nb2(1 +

ot—2

am | an (@R, - Ro)Yo)
’ (5.111.3)

and the second term becomes

(R —Ro03)o= j dnJ dn (5(Ry = R)(N = m)b? + (R = R+

nb’])o.
(5.111.4)

Hence

(R?) = Nb*+ [ am [ dn (5(R, — R)[(m = m)b” = (R = .o

N m
= Nb* + f dm f dn f aro(r)((m — n)b*— PP)Go(r, m —n) (5.11L.5)

where

3 ) (5.11L6)

Galr, m) = (3/2mb%)* exp( - s
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Since the integrand of eqn (5.1I1.5) depends only m — n, this is rewritten
as

(R?) = Nb*+ f dn(N - n) f dri(r)(nb? - ) Go(r, n). (5.111.7)

By use of the Fourier transform

dk b*k? e (_bzk2
2zy 9 " FP\T g
and eqn (5.53), eqn (5.111.7) is written as

Go(r, n)(nb*>-r?) = I n)c"‘ 7 (5.111.8)

N
dk 452 ( b2k2 ) k2
2\ _ 2 — 2 —_
(R*) =Nb +vf(2n)3£dn(N n) g e\ ) e
(5.1IL9)

Since the underlined part decreases quickly with n, the integral over n is
evaluated for large N as

o0

Tdn(N—n). .. =Nfdn. . (5.111.10)
0 0

Hence, we finally get

a5 ) T e

[ 12v§]
=Nb31+-2=2
Nb _1+:r <3k (5.111.11)

(R*) =Nb*}1+v
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6

DYNAMICS OF A POLYMER
IN A FIXED NETWORK

6.1 Tube model

6.1.1 Tube model in crosslinked systems

As mentioned in Section 5.4.3, the highly entangled state of polymers can
be effectively described by the tube model. The idea of the tube model
originated in studying the problem of rubber elasticity.’? A rubber is a
huge molecular network which is formed when a polymeric liquid is
crosslinked by chemical bonds.> An important problem in the theory of
rubber elasticity is to calculate the entropy, which is essentially the
number of allowed conformations of the chains constituting the rubber.
The topological constraints play an important role in such a problem.

Consider a lightly crosslinked rubber which consists of long strands of
polymers between crosslinks. A strand in such a rubber is schematically
shown in Fig. 6.1. In Fig. 6.1b the strand is placed on a plane and the
cross-sections of other strands are shown by dots. Due to the topological
constraints, the strand cannot cross the dots, so that the number of
conformations allowed for the strand is much less than that in free space.
How can we estimate it?

Suppose for a moment that the other chains are frozen, then the dots
can be regarded as fixed obstacles. One can see that the allowed
conformation of the strand is almost confined in a tube-like region shown
by the dotted lines: the conformations which go outside the tube are
likely to violate the topological constraints. The axis of the tube can be
defined as the shortest path connecting the two ends of the strand with
the same topology as the strand itself relative to the obstacles. Such a
path represents a group of conformations which are accessible to each
other without violating the topological constraints imposed by the other
chains, and is called the primitive path.” If the topological constraints are
replaced by the tube, the number @ of the allowed conformations can be
calculated easily by the method described in Chapter 2 (see Section 6.4).

In real rubbers, the situation is more complicated since the other
strands are mobile. However, even in such a case, a self-consistent
picture will be that the range in which each part of the strand can move
around will remain finite. The range is perhaps larger than the mean
separation between the frozen strands discussed above. What diameter
one should assign to the tube is a question which has not been answered
with absolute certainty. However, as long as the strand is long enough,
the diameter is determined by local conditions, and will be independent
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Fig. 6.1. (@) A strand in a rubber. A and B denote the crosslinks. (b) Schematic
picture of (a): the strand under consideration is placed on a plane and the other
strands intersecting the plane are shown by dots. (c¢) The tube model.

of the length of the strand. Detailed discussions"** on rubber elasticity
based on this idea and its appraisals®® are given in the literature. An
important point here is the proposition that the tube concept will be a
self-consistent picture in the system of topologically interacting system.

6.1.2 Tube model in uncrosslinked systems

The idea of the tube is intuitively appealing, and one can imagine that the
same picture will be useful for uncrosslinked system such as polymer
melts. However, one has to face a new problem that, in melts, the tube
itself changes with time because all conformations in a melt are
accessible. A key concept to solve this problem was introduced by de
Gennes’ who discussed the Brownian motion of an unattached chain
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(®)

Fig. 6.2. (a) A chain in a fixed network of obstacles (denoted by dots). (b) The
defects and the primitive chain (dashed line).

moving through a fixed network (see Fig. 6.2). His idea was that in the
situation shown in Fig. 6.2a, the motion of the chain is almost confined in
a tube-like region denoted by dotted lines in Fig. 6.2b. Since the chain is
rather longer than the tube, the slack will constitute a series of ‘defects’
which can flow up and down the tube (Fig. 6.2b). De Gennes visualized
this as a gas of non-interacting defects running along like the arch in a
caterpillar (see Fig. 6.3a). As a result of such motion, the tube itself
changes with time (Fig. 6.3b): for example if the chain moves right, the
part ByB can choose a random direction, and create a new part of the
tube which will be a constraint for the rest of the chain, while the part of
the previous tube AyoA becomes empty and disappears. This type of
motion was called reptation by de Gennes after the Latin reptare, to
creep.

Our current understanding of the dynamics of the highly entangled
state is based on the concept of reptation. This picture is rigorously
correct for the system that has been presented, i.e., a single chain in a
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(b)

Fig. 6.3. (a) Motion of a single defect (b) Motion of the tube.

fixed network. Whether the picture does indeed hold for concentrated
polymer solutions or melts still remains a matter for debate, but many
experimental results suggest that reptation is the dominant mechanism
for the dynamics of a chain in the highly entangled state. Leaving the
detailed discussion of this problem to the next chapter, we shall first
consider the simple situation of a chain moving in a fixed network.

6.2 Reptation

6.2.1 Primitive chain

Let us consider a polymer moving in a fixed network of obstacles. For the
convenience of later discussion, we shall specify the problem in slightly
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different terms from those used by de Gennes. We assume that the
intrinsic properties of the polymer are represented by the Rouse model
consisting of N segments with bond length b and friction constant §. The
obstacles are assumed to be thin lines, so they have no effect on static
properties, but have a serious effect on dynamical properties by imposing
topological constraints.

The characteristic feature of the dynamics can be visualized by the tube
model. For a given conformation of the polymer, we can draw the
primitive path, i.e., the shortest path connecting the two ends of the
chain with the same topology as the chain itself relative to the obstacles
(see the dashed line in Fig. 6.2b). In the short time-scale the motion of
the polymer is regarded as wriggling around the primitive path. On a
longer time-scale, the conformation of the primitive path changes as the
polymer moves, creating and destroying the ends of the primitive path.

Even though such a picture is clear, the mathematical treatment of the
problem is still complicated since the time evolution of the primitive path
is governed by the wriggling motion of the polymer, and the wriggling
motion itself is limited by the primitive path. However, if we are
interested in the large-scale motion of long chains, we may disregard the
small-scale fluctuations, and discuss only the time evolution of the
primitive path. Since the primitive path at any moment represents the
conformation of the chain with the small-scale fluctuations omitted, we
shall use the term ‘primitive chain’ to denote the dynamical equivalent of
the primitive path. At this level of description, the details of the wriggling
motion are irrelevant, and we can start with a simpler model.

To denote a point on the primitive chain, we use the contour length s
measured from the chain end and call this the primitive chain segment s.
If R(s, ¢) is its position at time ¢, the vector

u(s, t)= a%R(s, t) (6.1)

is the unit vector tangent to the primitive chain.

The dynamics of the primitive chain is characterized by the following
assumptions.

(i) The primitive chain has constant contour length L.

(ii) The primitive chain can move back and forth only along itself with
a certain diffusion constant D..

(iii) The correlation of the tangent vectors u(s, ) and u(s’,t) de-
creases quickly with |s —s’|.

The first assumption corresponds to neglecting the fluctuations of the
contour length. The second states that the motion of the primitive chain
is reptation. The third guarantees that the conformation of the primitive



REPTATION 193

chain becomes Gaussianf on a large length-scale. This assumption
introduces a new parameter into the problem. Since the mean square
distance between two points on the Gaussian chain is proportional to
|s — 5’|, it is written as

((R(s, ) —R(s", t))*) =a|s—s'| for |s—s'|>a. (6.2)

The length a is called the step length of the primitive chain.

The primitive chain is thus characterized by three parameters L, D,
and a, which must be expressed by the Rouse model parameters N, b, {
and the parameters characterizing the network. The parameter D, can be
identified as the diffusion coefficient of the Rouse model

ksT
D, NE (6.3)
because the motion of the primitive chain corresponds to the overall
translation of the Rouse chain along the tube. The length L is expressed
by a since the mean square end-to-end vector of the primitive chain,
which is La according to eqn (6.2), must be the same as that of the Rouse
chain Nb% Thus

Nb?

=—. 4
L=— (6.4)
We are left with a single parameter a, which depends on the statistical
nature of the network. Though precise calculation of this parameter is
difficult, it is obvious that a is of the order of the mesh size of the
network and much less than L. This knowledge is enough for the purpose

of the present discussion.

6.2.2 Simple application

We now study the dynamics of the primitive chain and show that certain
time correlation functions can be calculated by a straightforward
method.” For example, consider the time correlation function of the
end-to-end vector P(t)=R(L, t) - R(0, ¢). Figure 6.4 explains the prin-
ciple of calculating this correlation function. At ¢ =0, the chain is trapped
in a certain tube. As time passes, the primitive chain reptates and at a
certain later time (Fig. 6.4d), the part of the chain CD remains in the
original tube while the parts AC and DB are in a new tube. To calculate

T It must be remembered that despite the Gaussian behaviour with a large length-scale, the
primitive chain cannot be modelled by a continuous Gaussian chain since the contour length
of the continuous Gaussian chain is infinite and has no physical significance, while the
contour length of the primitive chain has a definite physical significance and appears in
various dynamical results.
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@)

(b)

(c)

@

Fig. 6.4. Four successive situations of a reptating chain. (@) The initial conforma-
tion of the primitive chain and the tube which we call the original tube. (b) and
(c) As the chain moves right or left, some parts of the chain leave the original
tube. The parts of the original tube which have become empty of the chain
disappear (dotted line). (d) The conformation at a later time ¢. The tube segment
vanishes when it is reached by either of the chain ends: ¢.g., the tube segment P
and Q vanish at the instance (b) when &(¢) =s, and at (c) when &(t) =s, — L,
respectively.

(P(t) - P(0)), we express P(t) and P(0) as
P(0)=A,C+ CD + DB, (6.5)
P(t)=AC+CD + DB (6.6)

Since the vectors AC and DB are uncorrelated with P(0), (P(f) - P(0))
will have the form

(P(t) - P(0)) = (CD?) = a(o(t)) (6.7)

where o(¢) is the contour length of CD, i.e., the part in the original tube.

To calculate (o(t)) we focus attention on a certain segment s of the
original tube. This tube segment disappears when it is reached by either
end of the primitive chain. Let y(s, ¢) be the probability that this tube



REPTATION 195

segment remains at time . The average (o(t)) is calculated as

(o(t)) = j dsy (s, 1). 6.8)

Let W(&, t;5) be the probability that the primitive chain moves the
distance & while its ends have not reached the segment s of the original
tube. The probability satisfies the one-dimensional diffusion equation

¥ Ay
E =D. 3—52 (6. 9)
with the initial condition

W(E, 0;5)=6(8). (6.10)

When & =35, the tube segment s is reached by the end of the primitive
chain and W(§, ¢; s) vanishes (see Fig. 6.4). Similarly when § =s — L, the
tube segment is reached by the other end and W(§, ¢; s) vanishes.t Thus

W(E t;5)=0 at E=s and E=s-L. (6.11)
The solution of eqn (6.9) with these boundary conditions is

W, t;5)= p}_:l Lsm( T ) (p J't(sL~ E))exp(—pzt/'rd) (6.12)

where
1, = L*/Dn> (6.13)

For the tube segment s to remain, & can be anywhere between s — L and
s, so that

¥, £) = f dEW(E, t; 5)
s—L

= ism(p )exp(-—pzt/rd) (6.14)

p;odd PTU L
Thus from eqns (6.7), (6.8), and (6.14)
(P(2) - P(0)) = Lay(t) = Nb*y(¢) (6.15)
where

~ptlt,). (6.16)

L
1 8
vo=g a6 o= 3 o

1 Strictly speaking this argument is valid in the limit of a— 0. If a is finite, the boundary
condition is not written in a simple form, but the correction is of the order of a/L.
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The longest relaxation time of (P(f) - P(0)) is given by 7,. This is called
the reptation or disengagement time, since it is the time needed for the
primitive chain to disengage from the tube it was confined to at ¢ =0.

Equation (6.15) can be compared with eqn (4.35) for the Rouse chain
without constraints:

(P(t) - P(0)) = Nb? pgdd pfn:z exp(—p?t/tg) (6.17)
where 75 is the Rouse relaxation time,
T = 3?2,2; (6.18)
On the other hand, eqn (6.13) is rewritten by eqns (6.3) and (6.4) as
Tqa= % ,iv—;f:: . (6.19)

Note that 7, is proportional to N> and becomes much larger than 75 for
large N. This demonstrates the crucial effect of topological constraints on
the conformational change of polymers.

Let us define the number of steps in a primitive chain by

Z="=". (6.20)

Then the ratio between t; and 15 is written as
14/t =32Z. (6.21)

Equation (6.19) has been confirmed by computer simulation.®'°

The function y(s, t) will appear frequently in the subsequent discus-
sions. This function has been defined as the probability that the original
tube segment s remains at time £. As will be shown in Section 6.3.3,
Y(s, t) also represents the probability that the primitive chain segment s
is in the original tube at time ¢. (Note the distinction between the tube
segment and the primitive chain segment; the former is fixed in space,
while the latter moves with the primitive chain.)

The behaviour of (s, t) is shown in Fig. 6.5. The tube segments in the
middle (s = L/2) have long lifetimes of order t,, while the tube segments
near the chain ends have very short lifetimes: the end segment is almost
instantaneously replaced. This fact will be used in the subsequent
discussions. The function (¢) represents the average fraction of the
original tube that remains at time ¢. This function is also equal to the
average fraction of the primitive chain contour that remains in the
original tube.
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v (s.t)

Fig. 6.5. The probability y(s, f) that the tube segment s is remaining at time t.
This is also equal to the probability that the primitive chain segment s remains in
the original tube at time ¢.

6.3 Reptation dynamics

6.3.1 Stochastic equation for reptation dynamics

Although the above probabilistic description is quite useful in under-
standing the essence of reptation dynamics, it becomes progressively
more difficult to proceed with the calculation for other types of time
correlation function. For example, it is not easy to calculate the mean
square displacement of a primitive chain segment ((R(s, t) — R(s, 0))?)
by this method. In this section we shall describe a convenient method"!
for calculating general time correlation functions.

First we derive a simple mathematical equation for reptation dynamics.
Let A&(t) be the distance that the primitive chain moves in a time
interval between ¢ and ¢ + At, then

R(s, t + At) =R(s + A&(¢), 1), (6.22)

which states simply that if the primitive chain moves the distance A&(¢)
along itself, the segment s comes to the point where the segment s + AE
was at time ¢ (see Fig. 6.6). The variable A&(¢t) takes random values, the
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/—R(s.r)

44(t)

R (s.t+A4t) —-/

Fig. 6.6. When the primitive chain moves a distance AZ(f) along itself, the
segment s comes to the point where the segment s + A§ was at time 1.

distribution of which is Gaussian characterized by the moments

(AE()) =0,  (AE(t)*) =2D.At, (6.23)
i.e.,
W(AE) = (47D, A1) Pexp ( - 43513) . (6.24)

Equation (6.22) is not correct for all s: if s + A§(¢) is not between 0
and L, R(s, t + At) should be on the newly created part of the tube (see
Fig. 6.6). Writing down this condition in a formal mathematical equation
is cumbersome. However, such an expression is not needed in practice
since the condition can usually be accounted for by the fact that the
distribution of the tangent vectors at the chain ends u(0, ¢) and u(L, ¢)
are independent of the previous conformation of the primitive chain since
their correlation time is infinitesimal. {

6.3.2 Segmental motion

To see how eqn (6.22) works, we calculate the mean square displacement
of a primitive chain segment s((R(s, t) — R(s, 0))?).

In this case it is more convenient to calculate the following time
correlation function,

o(s,s';8) = ((R(s, t) = R(s’, 0))*). (6.25)
The time evolution equation for ¢(s, s’; t) is written as
¢(s, s'st+ A1) = ([R(s + AE(), ) — R(s", O)F°)
= (¢p(s + A5(D), s"51)). (6.26)

The bracket in the last expression represents the average over A§(¢). To

+It must be remembered, however, that the dynamics of the chain end is extremely
important in reptation dynamics since eqn (6.22) only describes the one-dimensional
motion, and the three-dimensional property of the primitive chain is entirely governed by
the dynamics of the chain ends.
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calculate this average, we expand the right-hand side of eqn (6.26) and
use eqn (6.23):
3 AE 3

(Pp(s + A&, s';1)) = <(1 + AEas+——)¢(s, s's t)>

3, (88) &
=L )95, 5'59)

(1 + (A&)
(1 + D.At—; )¢(s, s';t). (6.27)

From eqns (6.26) and (6.27) we have

a L 82 ’
2 o(s, s';51) = Dc@ ¢(s, s';t). (6.28)
To solve this, we need the initial condition and the boundary condition:
(i) The initial condition is given by eqn (6.2),
(s, 83 ) =0=|s —s'| a. (6.29)

(ii) To obtain the boundary condition, we write d¢/3s at s = L as

a%‘#(s, 50| =2(u(L, ) (R(L, 1) - R(s', 0)))

=2(u(L, t) - (R(L, t) - R(s", t)))
+2(u(L, t) - (R(s", t) — R(s', 0)))  (6.30)

where s” is an arbitrary value betwen 0 and L. Since the correlation time
of u(L, t) is infinitesimal, the underlined part gives

(u(L, t) - (R(s", £) — R(s’, 0))) = (u(L, 1)) - ((R(s", t) = R(s’, 0))) =0.

(6.31)
The first term in eqn (6.30) gives
2u(L, ) (RE, )~ R, 0)) =5 (R, )~ RE",OF)|
;; a(s —s") . =a. (6.32)

Hence
a%¢(s,s';t)=a at s=L. (6.33)
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Similarly 5
‘—9;¢(s,s';t)= —a at s=0. (6.34)

The solution of eqn (6.28) with the boundary conditions (6.33) and
(6.34), and the initial condition (6.29) is

oo

(s, s';t)=|s —s'

Xcos( _) (”’“ )[1 exp(—1p*/1g)].  (6.35)

Hence

(s, s; t)— D t+ 2 (pzts) [1 - exp(—tp?/1,)]. (6.36)

p=1P

The expression becomes simple in two extreme cases:

(i) For t<1,, ¢(s,s:t) is dominated by the terms with large p.
Replacing cos’(psts/L) by the average 1/2, and converting the sum into
the integral, we have

¢(s, s;t) = Id

= 2a(D,,z/n)"2. (6.37)

This result is easily derived, for if # << 7, the polymer segment remains in
the initial tube, so that if the chain moves &(¢) along the tube, the mean
square displacement in the three-dimensional space is given by a{|&(¢)|)
(see eqn (6.2)). Hence ¢(s, s;t) is given by

¢ (s, s;t) = a{|&()])
=a [ a& 18l @nDt) " exp( - 1)

= 2a(D.t/7)">. (6.38)
(ii)) For ¢t > 1,, the first term in eqn (6.36) dominates, so that
¢(s, s;t)=2D,t/Z. (6.39)
Hence the diffusion constant D of the centre of mass is given as

(s, 55¢) kyTa?
———==D.3Z =——5—.

6t z 3N?¢b?
Thus the self-diffusion constant is proportional to N~%, which has also
been confirmed by computer experiment.®'°

*114))

D = lim (6.40)
—»©
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6.3.3 Correlation function of the tangent vectors
Next let us consider the time correlation function of the tangent vector
u(s, t):
G(s, s';t)=(u(s, t) - u(s’, 0)) (6.41)
which can be related to ¢(s, s'; ¢) by eqns (6.1) and (6.25):
OR(s,t) OR(s',0
G, s';t)=< a(rs . cgs' )>

= 35T (R, D~ R(s, O))
1 &
" 23s3s’

Substituting eqn (6.35), one gets

G(s,s';t)=ad(s —s') — i 2—asin(l"ms)sin(p]lis')[1 — exp(—tp?/1,)]

¢(s, s'; ). (6.42)

~TL
=3 ?—“sm(””s)sin(””")ex (~1p*/1,) (6.43)
=1 L L L p tp d). *

An important conclusion is derived from eqn (6.43) by a geometrical
interpretation of {(u(s, ¢t) - u(s’, 0)). First note that if u(s) and u(s’) are
the tangent vectors of a Gaussian chain of step length a, the integral

Haswe a6 65 (6.44)

52

is equal to 1 when s’ is between s; and s,. Now consider

Y(s', t) =§fds(u(s, t)-u(s’,0)). (6.45)
0

This is equal to unity at time ¢t=0. As time passes, the original tube
segment s’ becomes empty of the primitive chain. If this happens u(s’, 0)
becomes totally uncorrelated to u(s, ) and the contribution from such
case to (s’ t) is zero. Therefore y(s’, ) represents the probability that
the original tube segment s’ is remaining at time . Indeed from eqns
(6.43) and (6.45), it follows that

v, = 3 pinsin(”—"—s—')exp(—p%/rd) (6.46)

pi;odd L

which agrees with eqn (6.14).
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Now, one can show by a similar argument that the integral

W(s, )= (—t f ds’(u(s, t) - u(s’, 0)) (6.47)
0

represents the probability that the primitive chain segment s is in the
original tube. From eqns (6.43), (6.45), and (6.47) it follows that

Y(s, ) =y(s, 1) (6.48)

i.e., the probability that the original tube segment s remains is equal to
the probability that the primitive chain segment s is in the original tube
that remains.

6.3.4 Dynamic structure factor

As the final example, we shall consider the dynamic structure factor of a
single chain:

gk, t) =% Idsfds'(exp[ik *(R(s, t)— R(s', 0))]) . (6.49)
o 0

To calculate this quantity, we again consider ¢(s, s’;¢) defined by

@(s, s'; t) = (explik - (R(s, 1) — R(s', 0))]). (6.50)
By the same trick as that used in Section 6.3.2, we can show that

O i & :
3 ¢(s,s'5t) = DCa—s2 ¢(s, 55 ). (6.51)
Since the distribution of R(s, 0) — R(s’, 0) is Gaussian with the variance

als —s'|, the initial condition for ¢(s,s’;¢) is obtained as (see eqn
(2.79)

2
¢(s,s'; t)|,=o=eXP(-%a |s —S’I)- (6.52)

The boundary condition for ¢(s, s’;¢) is again obtained by the same
method as in eqn (6.30):

a—i¢(s, s'3 1) = ik - (u(L, t)explik - (R(L, t) — R(s’, 0))])

L

=ik - (u(L, t)exp[ik - (R(L, t) ~ R(s", 1))]

x exp[ik - (R(s", t) — R(s’, 0)]) (6.53)

where s” is again an arbitrary value between 0 and L. If s” is taken to be
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close to L, the average of the underlined part can be taken separately
from the rest since its correlation time is very short. Hence

5 66,5%0)| _ =ik (u(L, Dexplik - (REL, )~ R, )]
x (explik - (R(S", 1)~ R(s", )
= 5 (explik - (R(s, ) ~RG", )| _ 906", 5'30)
= — Waexpl - Wa(L~NPG" ). (6.59

In the limit of s”"— L, this gives

= —Wap(L, 5'; ). (6.55)

s=L

2] .
5; (P(S, s t)

Similarly

=31k%a¢(0, s';t). (6.56)

The solution of eqn (6.51) under these conditions is

(s, s';t) = Z[ 21 cos[za' (s—é)]

=l + af,,+ u L 2
20, ( L)] (—4Dctaf2) 2u
% (g1 — = P
xcos[ 2 3 ) [P\ 2 +y2+ﬂ§+y
o 7 (=3 I 2 (= 5) e (=3572)]
—£ f—— 6.57
xsm[L s — 5 sin 3 ) exp 12 (6.57)
where
k? S )
n=1 La= —-Nb =3(kR;) (6.58)
and a, and B, are the positive solutions of the equations
a,tana, =y, P,cotf,=—pu. (6.59)
From eqn (6.57) we get"!
2uN 5 ( 4Dcta2)
-—=£}, 6.
gk, t)= ,21 e+t )sm @, exp K (6.60)

The expressions are simplified for the two limiting cases.
(i) uK1, i.e., kR; < 1. Here eqn (6.60) is dominated by the term
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including @, = Vu « 1, thus

D._at
g(k, t)=N exp(—4D.tu/L*) =N exp( 3L kz) = N exp(—Dgk’t)
(6.61)

which is natural since, for kR;<<1, the dynamical structure factor is
governed by the diffusion of the centre of mass.

(ii) w>»1, kR,>1. In this case, the a, are approximated as
(p — 1/2)x, and eqn (6.60) reduces to

96N 1
g(k, 1) =k2aLn2p§“?exP(_tp2/t")

12
= k2b2 ‘l/)(l) (6'62)

This result is also derived by a simple argument. In the limit kR, >> 1, the
average of

L
gfds' explik - (R(s', t) — R(s, 0))]
0

is equal to 12/k?b? if R(s’, t) remains in the original tube, and zero if it
has already disengaged from it. Thus using the probability (s, ) that it
remains, we have

L
ds 12 12
80k )= [ T3 (5, 0= 133 ¥00). (6.63)
0

Notice that the decay rate of g(k, ¢) is 1/7, and depends strongly on the
molecular weight. This behaviour is entirely different from the result of
the Rouse dynamics, according to which g(k, ¢) becomes independent of
the chain length for kR, >>1 (see eqn (4.111.12)).

6.3.5 General time correlation functions

Time correlation functions of more complicated form can be calculated in
a similar way. For example, the time correlation function

Cs, 8", 5" )= ((R(s, £) = R(s", 0)) - (R(s", £) — R(s", 0))) (6.64)
can be calculated from
3 3 3\
~C= Dc(£+‘—9?) c (6.65)

under appropriate boundary conditions. In general the time correlation
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function C(sy, S, ..., Snm, t) which depends on the m-points on the
primitive chain is obtained from
3 Z 32
Sc=n(3 ) 6.6
€0\ 25,) € (6.66)

with appropriate boundary conditions.

6.4 Contour length fluctuation

6.4.1 Statistical distribution of the contour length

In the previous sections we regarded the primitive chain as an inexten-
sible string of contour length L. In reality, the contour length of the
primitive chain fluctuates with time, and the fluctuation sometimes plays
an important role in various dynamical processes.

First we consider the statistical distribution of the contour length. Since
the primitive chain represents a set of conformations of the Rouse chain,
the probability that a certain conformation of the primitive chain is
realized is proportional to w, the number of the conformations of the
Rouse chain which are represented by that primitive chain. The simplest
hypothesis is to take the polymer as a random walk confined within a
tube. Then w is calculated by the method described in Section 2.3.2 (see
Appendix 6.I). The result is

3L Nb?
N2~ ° 7&5—)
where w, is the number of the configuration in the free space, a,, the
diameter of the tube, and «,, a certain numerical factor which depends
on the shape of the cross-section of the tube. The logarithm of w gives
the entropy of the primitive chain

w(L) = w, exp( - (6.67)

3L? Nb?
N2 T %0 a3 )

At first sight eqn (6.68) may seem to imply a paradoxical result: since
the entropy increases with decreasing L, the chain will contract to the
state of L =0 if its ends are not fixed. This argument is wrong. The
collapse happens if the chain is confined in an infinitely long tube of given
conformation, but does not happen in the case of a network, where the
Rouse chain explores many tubes. To calculate the statistical distribution
of L in the network, one has to take into account the multiplicity of the
state specified by L. Let Q(L) be the number of primitive paths which
have length L, then the probability that a primitive chain has a contour

S() == ks (6.68)
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length L is
W(L)x w(L)Q(L). (6.69)

Q(L) can be estimated by the number of random walks consisting of L/a,
steps:

Q(L) = exp(afl aio) (6.70)

where «; is a certain numerical constant which depends on the structure
of the network. From eqns (6.67), (6.69), and (6.70)

312 L 3 _
WY(L)x exp( T INB? + a, Z)) x exp[ ~INBE (L- L)’] (6.71)

which has a maximum at
Nb?

=——, 6.72
L=3 2 (6.72)
From eqns (6.4) and (6.72)
3
a= o ay. (6.73)

This shows explicitly that the step length a of the primitive chain is of the
same order as the tube diameter ay. The average of the fluctuation is
calculated from eqn (6.71) as

aL= (a2 = [aLwaye - 1:)2]”2 — (Nb3)"® for L>VNb.
0 (6.74)

This statistical property of the primitive chain has been studied by
computer simulation.'® Under certain conditions, the statistical distribu-
tion of the primitive chain can be calculated analytically.'>** Both studies
show the relations

(LY*xN and (AL?)xN (6.75)
in agreement with eqns (6.72) and (6.74).

6.4.2 Dynamics of the contour length fluctuation

Having studied the static distribution of the contour length, we now
examine the dynamics of the contour length fluctuation. As before, we
use the Rouse model for the dynamics (see Fig. 6.7). Let s, be the
curvilinear coordinate of the n-th Rouse segment measured from a
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R

S

Fig. 6.7. A Rouse model describing the contour length fluctuation. The point O
denotes the origin of the curvilinear coordinate s,,.

certain fixed point on the tube. The contour length of the primitive chain
is defined by

L(t) = sn(t) — so(2). (6.76)

The dynamics of s, are described by the Langevin equation for the Rouse
model,

a 3ksT &
L5 =7 550 +Fu(0) (6.77)

where
(f1(0)=0 and (f()fn(t")) =2LksTS(n —m)d(t—1'). (6.78)

Since eqn (6.77) is the same linear equation as appeared in the Rouse
dynamics, analysis of this equation is straightforward. An important
difference, however, must be mentioned. In the present case, the
equilibrium average of the contour length is L:

(sn=s0) =L, (6.79)

while in the Rouse model the corresponding quantity (Ry — R,) is zero.
To get eqn (6.79) we have to modify the boundary condition which
corresponds to eqn (4.11). This is obtained as follows.

If we take the average of both sides of eqn (6.77) for the equilibrium
state, we have

3kgT &
o (50) =255 o5 (52(9) + () (6.80)
Both 3(s,)/3t and (f,(¢)) vanish at equilibrium, so that

ain,z (s,) =0. (6.81)
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For this to be consistent with eqn (6.79), the boundary condition must be

3 L
EZS"_I_\} at n=0and N. (6.82)
The boundary condition (6.82) can be visualized as a hypothetical
tensile force acting on the chain ends (see Fig. 6.82):
3kgT - 3kgT
E = = . .
9 Nb? L a (6.83)
The origin of this force is again the multiplicity of the tube. One can
intuitively understand it by considering the dynamical process at the
chain end. Suppose in a time At the chain end moves one step in a
random direction (see Fig. 6.8b). If it moves to the (z — 1) positions A,
A,, ... ,A,_1, the contour length increases, whilst if it moves to Ao, the
contour length decreases. Thus there is an imbalance in the change,
which tends to increase the contour length and causes the force (6.83).
For eqn (6.82) to be satisfied, the normal mode is now defined as

N
1
Yo=o ! dns,, (6.84)
17 7T L
— M( _f’._) =
Y, N!dncos(N)s,, >) for p=12..., (689)
® ® ® ®

_________ ﬁl .
| Feq
/\/NO’\I\JOV\O‘/W
|
|
_________ J N
® o [ ] ®
(a) (b)

Fig. 6.8. (a) Equilibrium tension acting on the primitive chain. (b) Physical
origin of the force F,,. The case of z =4 is shown.
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or
= pnan\ nL

=Yo+2 3 Y, c0s( 227 45 6.86

) 0 p§=:l » 08\~ N (6.86)

The coordinate Y, represents the position of the ‘curvilinear center of

mass’,
1 N
sg(t) = N ! dns,(t) = Yy(2), (6.87)

while the other coordinates Y, (p > 0) represents fluctuations along the

tube.
The equation of motion for Y, is precisely the same as eqn (4.19):

Y,
Ep —a—te ==kY, +f, (6.88)
with
Eo=NC¢, £, =2N¢ for p=1,2,...; (6.89)
6m%ksT
kp ==z P (6.90)
and

L) =0, (£Of(t))=25,ksTd,,6(t—1t"). (6.91)

Thus the time correlation functions for Y, are obtained as

2y o ks T
(%) - %)) =272, (6.92)
(%, 00%,0)) = gz exp(~1p*/ ), (6.99)

where 1 is the Rouse relaxation time given by eqn (6.18).

Equation (6.92) justifies the previous assumption that the diffusion
coefficient D, is equal to kzT/NE, the diffusion constant of the Rouse
chain.

From eqn (6.86) the contour length of the primitive chain is written as

L(#) = sn(t) — 50(¢) (6.94)
=L-4 3 Y,(). (6.95)
p:odd
The time correlation function of L(¢) is calculated from eqns (6.93) and
(6.95). The result is

8Nb? > 1

(L()L(0)) = L* + 3,2 exp(—tp?/1R). (6.96)
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In particular,

2 2
8Nb > _15=Nb 6.97)

(ALY =(L%) - =22

which agrees with eqn (6.74). The characteristic time of the contour

length fluctuation is tz, the Rouse relaxation time. Since
w_1 AL (3)";_1_
Ta Z’ E E \/Z ’

the effect of the contour length fluctuation can be neglected for Z > 1. It
is at this limit that the dynamics described in Section 6.3 is valid.

(6.98)

6.4.3 Effect of the contour length fluctuation on reptation

Though the contour length fluctuation becomes negligible for very large
Z, its effect is not negligible for usual values of Z, which are typically less
than 100. An important effect is found in the disengagement time 7,."
Consider the two situations shown in Fig. 6.9, one represents the motion
of the chain with fluctuations, and the other without. Obviously the life
time of the tube becomes shorter for the chain with fluctuation than for
the chain without, i.e., the contour length fluctuation reduces the
disengagement time. This effect is estimated as follows.

If the contour length fluctuation is neglected, the disengagement time
is estimated as the time necessary for the chain to move the distance L,

& = [*/D, (6.99)

0 A IS A A A AP iiiiiidiiiiiiiiisie s v
Y L o e P v ] i i A

£
!

t - 2222 ! ¢ AN |
l' 'V//////////// i ]' ////////AI' [
| |- g{t) —— | | |-t )=l :
| - ) |

{r e |- iL(t) -

@) (b)

Fig. 6.9. The Brownian motion Of a primitive chain with (a) fixed contour length,

and (b) fluctuating contour length. The oblique lines denote the region that has

not been reached by either end of the primitive chain. Obviously the length of
this region o(t) decreases faster in (b) than in (a). Reproduced from ref. 15.
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(The superscript (NF) stands for ‘no fluctuation’.) On the other hand if
there are fluctuations, the chain can disengage from the tube when it
moves the distance L — AL because the chain ends are fluctuating rapidly
over the distance AL. Hence the disengagement time is estimated as

1P = (L - ALY*/D.. (6.100)

(The superscript (F) stands for ‘fluctuation’.) From eqns (6.98) and
(6.100), it follows that

TP = tg“’)(l - W)z (6.101)

where X is a certain numerical constant.

Precise calculation of t¢ requires the first passage problem in
multidimensional phase space. A variational calculation'® for the Rouse
model shows that X is larger that 1.47. Hence the effect of the contour
length fluctuation is significant even if Z is as large as 100.

The effect of the contour length fluctuation has been studied for
slightly different models'’*® and it has been reported that the effect is less
significant than in the case of the Rouse model. The discrepancy is
perhaps due to the difference in the dynamics of the fluctuation,
especially the short-time dynamics, which is quite important in the first
passage time problem.’*%

6.4.4 Other small-scale fluctuations and their effects on the segmental
motion

Due to the small-scale fluctuations around the primitive path, the actual
dynamics of the Rouse segment in a network is much more complicated
than that described in Section 6.3.2. As an example, let us consider the
mean square displacement of a Rouse segment.

$a(t) = ((Ru(1) - R,(0))). (6.102)

The precise calculation of ¢,(¢) is difficult, but its characteristic features
can be inferred easily.

(i) For a very short time the segment does not feel the constraints of
the network, so that ¢,(f) is the same as that calculated for the Rouse
model in free space. Hence ¢,(¢) is given by eqn (4.111.6) as

$.(t) = 6Dt +‘W”2 i] = cos (;n)(l—exp(—tpzlrk)). (6.103)

Since ¢ << 1g, eqn (6.103) is approximated in the same way as in eqn
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(6.37),

om0 =223 [ dp =541~ exp(~1p"/x0)

=2Nb2(t/:r31:R)"2= (ks TH/ )", (6.104)

This formula is correct when the average displacement is much less than
the tube diameter. Let 7, be the time at which the segmental displace-
ment becomes comparable to a:

a® = ¢,(1.) = (kg TH*/{)"*Vx, (6.105)
i.e.,
1, =a*C/kpTh> (6.106)

The time 1. denotes the onset of the effect of tube constraints: for t < 7.,
the chain behaves as a Rouse chain in free space, while for > 1, the
chain feels the constraints imposed by the tube,

(ii) For t> 1, the motion of the Rouse segment perpendicular to the
primitive path is restricted, but the motion along the primitive path is
free. The mean square displacement along the tube is calculated from
eqns (6.86)-(6.93) as

((52(0) = 52O = (%) — XeO)) +4 3, cos?( B )((%,(0) ~ % (0

p=1
kgT  4Nb* & pan
“2E 4 5 2o () - e
_ {(kBszt/C)U2 t=< 15, (6.107)
kBT‘/NC = Tg. (6.108)

From this, ¢,(¢) is estimated as in Section 6.3.2. If the segment moves

s.(t) —5,(0) along the tube, the mean square displacement in the
three-dimensional space is a [s,(f) — 5,(0)|. Hence

dn(t) = alsn(t) — 5.(0)|) = a{(sa(r) - s,.((’))z)“2 (6.109)
From eqns (6.107)-(6.109)

a(ksTH*t/D)V* .St s 1R,

o 11
n(t) {a(kB TtINDY?  1xstsT,. (6.110)
Note that ¢,(¢) is proportional to t'* in the time region T, StS T, This
specific diffusion behaviour, first predicted by de Gennes,’ is a conse-
quence of the two effects, the Rouse-like diffusion equation (6.107), and
the tube constraints equation (6.109). On the other hand, the behaviour
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)

log<(R,(t)—R.(0) >

-
log t
Fig. 6.10. Mean square displacement of a chain segment is plotted logarithmically
against time.

for T= 1ty agrees with that predicted by the primitive chain dynamics
equation (6.37).

(iil) For t= 1,, the dynamics is governed by the reptation process. As
discussed in the previous section

2 kyTa?

—Zp =" 111
on(2) ZDct N’Cbzt t=1, (6.111)
Equations (6.104), (6.110), and (6.111) are summarized as follows*’
Nb’(t/t)" tst,,
NbX(t/Z*1)"* 1.t <1y,
o= 112
¢n(t) sz(t/fd)m Tr <t< Ty, (6 )
Nb(t/1,) 1, st

Fig. 6.11. Motion of a star polymer. Reproduced from ref. 28.
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with
T, == Z_ZTR, Ta = Ztg.

Figure 6.11 shows the schematic behaviour of ¢,(f). The behaviour has
been confirmed by computer experiment.”

These fluctuations affect the dynamic structure factor. This has been
studied in refs 21 and 22.

6.4.5 Branched polymers

The contour length fluctuation plays an essential role in the dynamics of
branched polymers.”** Consider for example the star-shaped polymer
shown in Fig. 6.11. Obviously simple reptation is not possible, but the
polymer can change its conformation by utilizing the contour length
fluctuation.

For example, if the polymer withdraws an arm down the tube to its
branching point, the arm can go into a new tube (see Fig. 6.12a~c). This
process can be described by the model given in Section 6.4.2. Though it is
possible to dévelop a rather elaborate calculation,* here we will consider
only a crude estimation.?®

Let us consider that the polymer has f arms of equal length each
consisting of N, = N/f Rouse segments. For simplicity we assume that the
central segment is fixed, and consider the fluctuation of the contour
length L, of the arm. Since the probability distribution of L, at
equilibrium is given by

WL xexp| - > (Lo~ LY, (6.113)

the motion of L, can be visualized as the Brownian motion of a particle
in a harmonic potential,
3kpT .
U(L,) -ﬁ (L, —L,)> (6.114)
The disengagement time 1, of the arm can be estimated by the mean first
passage time of the particle to the point L, =0. If we use the simple

Fig. 6.12. A star polymer in the network of obstacles.
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theory of the activation process, we have
T4 % 1o exp((U(L, =0) — U(L,))/ksT) (6.115)

where the front factor 7, depends on L weakly. Equations (6.114) and
(6.115) give

2
1, % 7o exp(3L2/2N,b%) x 1, exp[%Na(g) ] : (6.116)

Hence 7, increases exponentially with the arm length N,. This result, first
predicted by de Gennes,” has been confirmed by computer simulation,*
and by experiments.?®

The diffusion constant Dg; of the star ffolymers is estimated by the
following argument.”” For the central segment to move to the next stable
point, the polymer has to withdraw (f —2) arms to the branching point.
The ‘activation’ energy required for such a process is

AU =(f = 2)(U(L, = 0) — U(L, = L,)) = 3N,(f - 2)kBT(%)2. (6.117)

Hence
2

Dg = a*/[to exp(AU/kzT)] = :— exp[ -3(f— 2)Na(b
o

2

a) ] . (6.118)
Thus Dg decreases exponentially with the arm length N,. This result has
been confirmed by computer simulation' and by the diffusion experiment
of a star polymer in a large molecular weight matrix.?®

In the above discussion, we assumed that the position of the central
segment is essentially fixed. This assumption can be removed,” but the
essential result remains unchanged.

Appendix 6.1 Entropy of a polymer in a tube

Consider a polymer confined in a straight tube of square cross-section,
with both its ends fixed at R and R’, respectively (see Fig. 6.13). The
number @ of the allowed conformation of the polymer is proportional to

Fig. 6.13. A polymer confined in a straight tube of square cross-section with its
ends fixed at R and R’, respectively.
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the Green function G(R, R'; N):
® = w,G(R, R"; N) 6.1.1)

where w, is the number of the allowed conformation in free space. The
Green function of a polymer in a box has already been calculated in
Section 2.3.2 as

GR,R';N)= [] g.(Ra, R;N) (6.12)

a=x,y,z

where g, and g, are given as (for L, =L, =a, < VNb)

ga(Ra, R N) == sin("R“)sin(“R“)
Qo (71 Qg

2072
Xexp(—n()]:;) for o=x,y, (6.1.3)

while g, is given by that in the free space

3 2 3(R, ~ Ry
z Rz: ;; = = = N
&:(Rs, R:i N) (wvb’) °"p( 2Nb? ) 6.1.4)
Consider that the end points are fixed at
_ (% % = (% %
R—(2,2,L) and R (2,2,0). (6.1.5)

Substituting this into eqns (6.1.3) and (6.1.5), we have

— o 2) (- Nomz) () 619
=00\ ) X\~ 32 Noanez) P\ “anpr) O

which is eqn (6.67).
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7

MOLECULAR THEORY FOR THE
VISCOELASTICITY OF POLYMERIC LIQUIDS

7.1 Tube model in concentrated solutions and melts

In the previous chapter, we discussed the dynamics of a polymer in a
fixed network. We shall now discuss the polymer dynamics in concen-
trated solutions and melts. In these systems, though all polymers are
moving simultaneously it can be argued that the reptation picture will
also hold. Consider the motion of a certain test polymer arbitrarily
chosen in melts. If the test polymer moves perpendicularly to its own
contour, it drags many other chains surrounding it and will feel a large
resistance. On the other hand the movement of the test polymer along its
contour will be much easier. It will be thus plausible to assume that the
polymer is confined in a tube-like region, and the major mode of the
dynamics is reptation.

Physically the tube represents the following situation: as long as the
displacement of the segment of the test polymer is small, the environ-
ment behaves as a liquid characterized by a certain local viscosity, which
determines the friction constant £. On the other hand the segment cannot
make a large displacement in arbitrary direction which would distort
many surrounding chains. Thus there must be a certain characteristic
length which distinguishes the two cases. This length is represented by a,
the Kuhn step length of the tube, which approximately represents the
diameter of the tube.

Clearly it is a crude simplification to characterize the effect of the
environment by a single parameter a. A more appropriate description
would be to assign a viscoelastic character to the environment. However,
we proceed here using the simplest possible model. As we shall show
later various experimental results indicate that this model is adequate for
linear polymers with narrow distribution of molecular weight. Limitations
of the model will be discussed later.

Within this framework, one can draw a rather simplified picture about
the dynamics of the polymers in the entangled state. If the characteristic
length scale of a motion is smaller than g, the entanglement effect is not
important, and the dynamics is well described by the Rouse model (or
the Zimm model if the hydrodynamic interaction is not screened). On the
other hand, if the length-scale of the motion becomes larger than a, the
dynamics is governed by reptation.

That the short time-scale (or small length-scale) motion of the polymer
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is not affected by entanglement is supported by various experimental
observations:

(i) The viscoelasticity of polymer melts can be explained by the Rouse
model if the molecular weight is less than a certain value, or if the
time-scale is shorter than a certain characteristic time.'”

(ii)) The dielectric relaxation of the melts of polymers which have
dipole moments along the main chain is described by the Rouse model if
the molecular weight is less than a certain value.* *

(iif) The dynamical structure factor of neutron scattering, whose time-
scale usually corresponds to the motion inside the tube, is fitted by the
Rouse model in melts and the Zimm model in solutions.>’

On the other hand there is much experimental evidence which
indicates that reptation is the dominant motion governing the dynamics in
the highly entangled state.

Clear evidence comes from the study of diffusion. Klein et al.®®
measured the diffusion constant of a deutrated polyethylene in a
polyethylene matrix, and found

DgxM™> (7.1)

in agreement with the result of reptation dynamics (eqn 6.40). The
self-diffusion constant of a labelled polymer in solutions and melts has
been measured by other techniques (forced Rayleigh scattering’® and
field gradient Nuclear Magnetic Resonance,'’*?) and eqn (7.1) is fully
confirmed in these systems. (A comprehensive review is given by
Tirrell.’)

More evidence comes from the study of viscoelasticity, which has been
done extensively in the past and established the characteristic aspects
common to all flexible polymers.>> The reptation model has succeeded in
explaining many of these features and also predicting some of the
behaviour in nonlinear viscoelasticity. In this chapter we shall describe
the reptation theory'** for viscoelasticity in detail, and discuss the
validity of the reptation model in solutions and melts.

The viscoelastic properties of polymers are quite important in polymer
technology. A great deal of experimental work has been done, and at the
same time phenomenological theories have been developed to a highly
sophisticated level. These are summarized in various monographs.>¢!%
An overview of this field can be obtained in the excellent textbook by
Bird et al.” Here we shall limit ourselves to the molecular aspects of the
problem, i.e., how the viscoelastic properties are related to the molecular
dynamics and how they depend on molecular parameters such as
molecular weight, concentration, and molecular structure.
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7.2 Microscopic expression for the stress tensor
7.2.1 Stress in polymeric liquids

To understand the mechanical properties of materials, it is important
to consider first the microscopic origin of stress. In the usual gas or liquid
of small molecules, the stress comes from the momentum transfer due to
the intermolecular collision. In polymeric liquids, the stress is mainly due
to the intramolecular force, and is directly related to the orientation of
the bond vectors of the polymer. This idea, originated from the theory of
rubber elasticity,? is fundamental in the physics of polymeric materials.}
To demonstrate the point, let us first consider a dilute polymer
solution. As shown in Section 4.5.2, the stress tensor is written as

Cap(t) = (Kap(t) + Kpa ()5 + 0EX() + PS5 (7.2)

where 7, is the viscosity of the solvent, k,z is the velocity gradient tensor
and 0%} represents the contribution from the polymer

3%, T /3R,
"9”3(')=§2,,: b? ( Ran(t) aRgfz(t)>‘

This is directly related to the orientation of the vector oR,/dn, and it is
this term that gives the viscoelasticity of dilute solutions.

In the dilute solution, the viscoelasticity has only a small effect; the
major contribution to the stress is the purely viscous stress given by the
first term in eqn (7.2). The situation changes with increasing polymer
concentration. The contribution of o) increases steeply (because the
polymers become more easily oriented due to the entanglement), while
the contribution of the first term remains essentially unchanged. When
o) dominates the first term, the total stress is simply related to the
orientation of the bond vectors:

_E 3kBT aR,m,(t) aRnp(t)
o“ﬁ(t)_Nz,,: b? < én on >

Note that eqn (7.4) is valid even if the excluded volume effect is
accounted for since, as shown in eqn (4.135), the pseudo-potential
described by the delta function does not change the expression for the
stress tensor (apart from the isotropic stress, i.e., the pressure).

(1.3)

(7.4)

1 Historically, the molecular theory for the mechanical properties of polymeric materials
was first constructed for rubbers, and it was realized that the stress is related to the
orientation of the polymer segments. That the stress in polymer melts has the same
molecular origin as in rubbers was noted by Green and Tobolsky,?’ who regarded the
polymer melt as a kind of network with temporary junctions. This idea has been the base of
successful phenomenological theories'®? and it is indeed used in the present theory.
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The above argument is essentially for semidilute solutions, and may
not apply to concentrated solutions and melts in which the intermolecular
interaction cannot be described by the pseudo-potential. However, since
the intermolecular interaction does not have any specific polymeric effect
(for example the associated relaxation times will be as short as in a liquid
monomer), one can argue that their effect will be only to give a constant
viscous stress. Indeed eqn (7.4) is derived from the fact that even in the
highly entangled state the short-time dynamics of polymers is described
by the Rouse model. For, as was discussed in Sections 3.7.4 and 3.8.4,
the expression of the stress tensor is entirely determined by the
short-time dynamics: for example, the elastic stress is given by the change
in the free energy for an instantaneous deformation. Therefore if the
short-time dynamics is given by the Rouse model, the expression for the
elastic stress must be the same as for the Rouse model, which is eqn
(7.4). Thus eqn (7.4) holds quite generally in polymeric liquids in which
the viscous stress is negligibly small. T

Since the short-time dynamics of polymers is unaffected by the global
molecular structure, such as branching or crosslinks, the same argument
will also hold for branched polymers and gels. In these systems, the stress
is written as

O.(t) = (7.5)

L <aR,,,,(r) 8R,,p(t)>

all segments b2 on on

in unit volume
where R, is the position of the segments which are chosen small
compared to the distance between the branching points (or crosslink
points).

7.2.2 Stress optical law

The above argument is crucially supported by the stress optical law,**®
}Vhich is obtained by comparing eqn (7.4) with the formula for the
intrinsic birefringence (eqn (4.238))

n) = Co,ps(t) (7.6)
where
2a(n*+2)?
= _Av. 7.
= A (7.7)

t That the viscous stress of polymeric liquids is negligibly small compared to the elastic
stress is well established experimentally. Indeed this fact has been taken as a basic postulate
in Coleman’s phenomenological theory” (see also Chapter 4, ref. 17). It must be noted that
this is the result of the elastic stress contribution becoming so large relative to the viscous
stress: the absolute magnitude of the viscous stress will not differ considerably between
simple liquids and polymeric liquids.
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In concentrated solutions and melts, the intrinsic birefringence n$) can be
regarded as the total birefringence since the form birefringence is
negligibly small as was shown in Chapter 5. Thus eqn (7.6) is written as

n.g = Co,g + isotropic tensor. (7.8)

This is the stress optical law, which has been found experimentally to
hold for rubbers and the more general problem of polymeric liquids.?®

Two important aspects of eqn (7.8) must be mentioned.

(i) The simple linear relation between the stress and the birefringence
holds even when the relation between the stress and the velocity gradient
becomes quite complex (generally a nonlinear functional). Thus eqn (7.8)
has much deeper physical significance than the similar relation for
amorphous solids, which is derived by the symmetry argument and is
limited to the Hookian range of elasticity.

(ii) The proportional constant C is a function of the local condition
such as the temperature, solvent, and polymer concentration but is quite
independent of the features of molecular structure on a large length-scale
such as the molecular weight, molecular weight distribution, branching,
and degree of crosslinking.t

These results are fully confirmed by experiment. The only explanation
for such a general relation is that both the stress and the birefringence
have the same physical origin, i.e., the orientational ordering in the
polymer segments.

In deriving eqn (7.8) we assumed that (a) the relation between the
orientation of the bond vectors and that of the end-to-end vector of the
Rouse segments is linear (eqn (4.IV.13)) and that (b) the form
birefringence is neglected. The stress optical law breaks down when
either of these conditions is not met.>* For example, the first condition is
not satisfied when the stress is very large, as often happens in experi-
ments near the glass transition temperature. The second condition is not
satisfied when the sample includes a spatial inhomogeneity as in the case
of block copolymers or polymer blends which include microphase
separation. Except for these situations, the stress optical law holds quite
generally in polymeric liquids.

7.3 Linear viscoelasticity

7.3.1 Background of phenomenological theory

The viscoelastic properties of a material are entirely characterized by the
constitutive equation which relates the stress tensor o,g(f) to the velocity

t Though the excluded volume interaction (and other Van der Waals’ type of interaction
among the segments) do not violate the validity of eqns (7.4) and (7.8),7 they do affect the
stress optical coefficient C. For example C is sensitive to the nematic-like interaction which
tends to orient the neighbouring segments in the same direction.?*?®
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gradient tensor k,s(¢). In usual fluids the relationship is simple,

O'aﬁ(t) = (K'aﬁ(t) + Kﬁn,(t))ﬂ. (79)

In polymeric liquids the constitutive equation becomes quite complicated:
the stress depends on the previous values of the velocity gradient tensor
and the dependence is generally not linear; hence the relation is written
only by a nonlinear functional relation:

0up(t) = EuglKag] for Keop(t') with #' <. (7.10)

However, in the special case that the perturbation by the velocity
gradient is small, the relation between the stress and the velocity gradient
becomes linear and is written as>*’

0.5(t) = f dt'G(t — ') (Kap (') + Kga(t))). (7.11)

This constitutive equation includes only one material function G(¢),
called the shear relaxation modulus.

Though the applicability of eqn (7.11) is limited, linear viscoelasticity
has been studied in great detail as it represents a property of the material
in a well-defined limit.

For shear flow

v, =Kk (1)y, v, =0, v, =0, (7.12)
equation (7.11) reduces to the form given in Chapter 4 (eqn (4.116)),
Oy(t) = j dt'G(t —t)k(t'). (7.13)
Let y(¢) be the shear strain me;:ured from the state at ¢t =0:
y(t) = jdt'tc(t') (oo <t < +), (7.14)
Equation (7.13) is then rev:ritten by integration by parts as
0 (1) = I dt'G(t — t')% (7.15)

=[Gt —t")y(t"))-. ~ f dr’ aG(' G0 e

f ar 22820 () - ey, (7.16)

Let us consider three typical situations shown in Fig. 7.1.



224 MOLECULAR THEORY OF POLYMERIC LIQUIDS
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Fig. 7.1. (a) Stepwise shear, (b) oscillatory shear and (¢) creep.

(a) Stepwise shear (Fig. 7.1a). The sample is deformed instantaneously
at time ¢ = 0. The shear strain y(¢) is given by

(t)_{o t<0,
Y Yo t>09

(7.17)
for which, eqn (7.16) gives
0y (1) = Yo G (). (7.18)

This provides a direct determination of G(¢).
(b) Oscillatory shear (Fig. 7.1b). This has already been discussed in
Chapter 4. The shear strain is give by

y(t) = yo cos (wt) = y, Re(e'™). (7.19)

The response defines the storage modulus G'(w), loss modulus G"(w),
and the complex modulus G*(w),

0,,(t) = yo(G' cos(wt) — G"(w)sin(wt))
= yoRe(G*(w)e'™) (7.20)
where
G*(w) = G'(w) +iG"(w). (7.21)
It is easy to show that egn (7.16) gives

G*(@) =i [ dre—G(f) (7.22)
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and ® ®
G'(w)=w f dt sin(w?)G(¢) G'(w)=w I dz cos(wt)G(t). (7.23)

(c) Creep (Fig. 7.1c). When a constant shear stress o, is applied to the
system at equilibrium, the system starts to flow. The shear strain y(t) is
obtained from the integral equation:

f dt'G(t—1') ’(’1(, ). (7.24)
This can be solved by the Fourier-Laplace transform:
—i8+0 gion
Y(') = oo-i » 2”, (DG*((D) (7‘25)

where § is an arbitrary positive constant. The behaviour of y(t) for t— o
is governed by the contribution from the pole at @ = 0. Since for small @
G*(w) is given by

G*(w)= iwfdt(l —iwt+...)G() =iwg,+ w’g,+... (7.26)
0
with
e f dtG(t) and g = f dG (2, (7.27)
0 0
the contribution from the pole at w =0 is given by
81

t)=o0 ( ) 7.28
y(#) = 00 P (7.28)

For large ¢, eqn (7.28) gives o, =g, dy/dt, whence g, can be identified
with the steady state viscosity 7,. The constant term g,/g2 is called the
steady-state compliance and written as J&. Thus

o= f aG(e) = lim 2, (7.29)

JO= f G (i)t / [ f dtG(t)] = lim c(;;((a‘:’))z (7.30)

7.3.2 Calculation by Rouse model

We now study the linear viscoelasticity from the molecular viewpoint.
First we consider Rouse dynamics. This corresponds to the case of short
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polymers in melts. The basic equations and their development are
precisely the same as in Sections 4.5.3 and 4.5.4. The only distinction is
that the viscous stress is now negligibly small, so that G®(¢) in eqn
(4.158), which corresponds to the polymer contribution to the relaxation
modulus in Chapter 4, is now regarded as the relaxation modulus of the
system. Thus

G(t)=— kBTZ exp(—2tp%/1z) (7.31)
p=1
where
END?
TR 3k, T (7.32)
The viscosity and the steady-state compliance are calculated from G(¢),
_ 1 _c CkB - C_C 2
! dtG(t) = k,,T%tRp}_:l P~ =5 ( N )R =3¢ Nb* (7.33)
and
o= (3 (Er) i 039
¢ 2 \p=1 p=1 5Ck3 T. )

These are written in terms of the molecular weight M, the weight of
polymers in unit volume p (=cM/NN,), and the gas constant R (=N, kp)
as

TR < M2, (7.35)
No=75 ( M Tr < PM, (7.36)
2M
0) —
Je SpRT" (7.37)

These results are confirmed for polymer melts with low molecular
weight.%?

7.3.3 Calculation by reptation model

Next we consider a polymer meilt of high molecular weight in which
entanglement is very important. To calculate G(¢), it is convenient to
consider the stress relaxation after a step strain. Suppose at ¢t =0 a shear
strain y is applied to the system in equilibrium. The strain causes the
deformation of the molecular conformation, and creates the stress, which
relaxes with time as the conformation of polymers goes back to
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equilibrium. Though description of this process in the general case is
slightly involved (see Section 7.5), the relaxation modulus in the linear
regime can be obtained by a simple argument.

(A) For small ¢ (¢ < t,), the dynamics is described by the Rouse model
and the relaxation modulus is given by eqn (7.31). Since 7, << 7z, eqn
(7.31) is approximated as

12
- VZNkBT( ) (t<t.). (1.38)

Gty = koT [ dp exp(~2%/74) =
0

(B) For t = 7., the Rouse behaviour is stopped by the tube constraints,
and the reptation behaviour starts. According to reptation dynamics, the
relaxation will generally involve two processes, the relaxation of the
contour length, and the disengagement from the deformed tube, each
being characterized by the time 7z and 7, respectively. In the linear
regime (of small y), however, the first process does not appear since the
change in the contour length by the shear strain is an even function of y
and can be neglected to the first order in y. Thus the relaxation for ¢t > 7,
is only due to the disengagement. This can be evaluated as follows (see
Fig. 7.2).

At t =1, the whole polymer is confined in a deformed tube. As time
passes, the polymer reptates, and at time ¢ the parts of the polymer near
the ends have disengaged from the deformed tube, while the part in the
middle is still confined in the tube. Since only the segments in the
deformed tube are oriented and contribute to the stress, the stress is
proportional to the fraction y(t) of the polymers still confined in the

(a) {®) (©

Fig. 7.2. Explanation of the stress relaxation after small step strain. (a) Before

deformation, the conformation of the tube is in equilibrium. (b) Immediately

after the deformation, the whole tube is deformed. The deformed part is

indicated by the oblique lines. For small strain, the contour length of the tube is

unchanged. (c) At a later time ¢, the chain is partly confined in a deformed tube.
The average of the contour length o(¢) of this part is equal to Ly(z).
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deformed tube, i.e.,
G()=GPy() (=) (7.39)

where G{? is a certain constant and y(¢) has already been calculated in
Section 6.2.2 (see eqn (6.16)),

V)= 3, en(-pn) (7.40)
with
EN2 (b
7.41
T ks T () (7.41)

To obtain G, we utilize the fact that at ¢ = 7,, the Rouse-like behaviour
(eqn (7.38)) smoothly crosses over to the reptation behaviour (eqn
(7.39)), i.e.,

G~ G(t,)z—ka (:“),z (7.42)

or using eqn (6.106)
b2
GO = 9— ksT. (1.43)

Equation (7.38) is then written as
T 172
G(t) = G;‘,”(T") for t<t,. (7.44)

Equations (7.39) and (7.44) give the relaxation modulus in the highly
entangled state. We shall now compare this result with experiments.

7.3.4 Comparison with experiments

Overall shape of the relaxation modulus. The theoretical relaxation
modulus G(¢) is shown in Fig. 7.3a. It is seen that G(¢) is nearly flat for
1, <t<t,; The width of the plateau region increases with increasing
molecular weight since 7, is proportional to M>, while 7, and the height
of the plateau are independent of M. This is in good agreement with
experimental results.*

Figure 7.3b shows the storage modulus calculated by eqns (7.23),
(7.39), and (7.44),

172
G'(w)= GSS)( wt,) for wr,=1

8 1 (wry/p??
- Gg))pgdd_n_zp_i - i (ajrp/pz)z for wr.<1. (7.45)
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Fig. 7.3. Theoretical results of (¢) G(f) and (b) G'(w).

The same characteristics as of G(r) are observed here: G'(w) has a
plateau over a wide-frequency region 1/7, <@ <1/1,. With increasing
molecular weight, the low-frequency end of the plateau region decreases
in proportion to M >, while the high-frequency end and the height of the
plateau remain constant. This behaviour is strikingly demonstrated by the
experiment of Onogi et al.>' (see Fig. 7.4).

Maximum relaxation time, viscosity, and steady-state compliance. The
longest relaxation time 7, of G(¢) is 7,

EN’b? (b\? _ Nb*
Tmax = T4 =Jt2k3T (;) =3—az—TR. (746)

The viscosity and the steady-state compliance are calculated from eqns
(7.29) and (7.30). Since the contribution to the integral from the region
t <, is very small, n, and J are given by

o= G© f dry () =15 G, (7.47)
0
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Fig. 7.4. Storage modulus vs. frequency for narrow distribution polystyrene

melts. Molecular weight ranges form M, =8.9x10* (L9) to M, =58x10°
(L18). Reproduced from ref. 31.

and
eyl [Jwvol sty s
Thus Tmax, 7o and J depend on the molecular weight M as*
Toax ~ M3, o~ M3, JO ~ M. (7.49)

That the steady-state compliance is independent of the molecular weight
is in agreement with experimental results*? (Fig. 7.5). On the other
hand, the experimental exponent in the molecular weight dependence of
Tmax and 7, is slightly larger than 3, ranging from 3 to 3.7.*°° An
example of the viscosity in melts is given in Fig. 7.6. The reason for the
discrepancy will be discussed later.

7.3.5 Tube diameter in melts

Given the general agreement in the shape of the relaxation modulus, it is
possible to determine the step length a of the primitive chain.” Though
various ways are conceivable, a direct way is to use the plateau modulus
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G§?, which is related to a by eqn (7.43). Since

ch? = %sz =%"Nb{ (7.50)
eqn (7.43) is written as
RT Nb?
G =”7?. (7.51)

Experimentally G{) is often expressed by a characteristic molecular
weight M,, called the molecular weight between entanglements, which is
defined by

PRT

M,=GS$).

(1.52)
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It follows from eqns (7.51) and (7.52) that
M, vz
a=~ (—‘ Nb’) =R, (7.53)

where R, is the root mean square of the end-to-end distance of the
polymer with the molecular weight M,.

The precise numerical coefficient in eqn (7.53) is not given by the
simple argument given in Section 7.3.3. To determine the coefficient, a
further assumption is needed about the deformation of the tube under
strain. A specific model described in the next section gives

4M )
a’= 57y Nb* =0.8R3, (7.54)

which we shall now use.

The value of M, in polymer melts is tabulated in the literature,? from
which q is found to be 82 A for polystyrene and 34 A for polyethylene.*
This distance is much larger than the correlation length measured by
neutron scattering or X-ray scattering. At present, it is not fully
understood what factors determine a, but various semiempirical relations
are available for M,.*>>”3® Here we shall proceed regarding a as an
adjustable parameter.

Graessley®® showed that the above estimation of a is consistent with the
results of diffusion experiments. According to the reptation theory, the
self diffusion constant Dg is given by (see eqn (6.40))

3Nb* N¢°
To eliminate ¢, it is convenient to consider the zero shear rate viscosity
calculated by the Rouse dynamics

DG=

(7.55)

1 PNa ... =

R) 3 2 _FYA 2
where R}, is the mean square end-to-end distance of the polymer of
molecular weight M. Experimentally, n§®(M) can be obtained by
€xtracting the viscosity for low molecular weight according to the

following equation (see Fig. 7.7)
M

n§(M) = Uo(Mnf)ﬁ‘ (7.57)

ref

where M, is an arbitrary molecular weight in the Rouse regime.



234 MOLECULAR THEORY OF POLYMERIC LIQUIDS

log 70 §
/!
/) ~B00Me
Slope 3//
// Slope 3.4
/ 1 (M)
/ /,/”’
e ~ Slope 1
tu,
-
log M

Fig. 7.7. Viscosity curve. Solid line: experimental formula eqns (7.71) and (7.72).
Dashed line: theoretical curve, eqn (7.73).

From eqns (7.54)—(7.56), it follows that
1 (Rﬁ,) M, pRT
135\ M/ M nM)"

According to Graessley,* eqn (7.58) gives values in reasonable agree-
ment with experimental results®*® (e.g. for the case of polyethylene the
error being only about 30%). Considering the different nature of the
experiments, the agreement is remarkable.

That the length a is rather large seems to be consistent with the fact
that both neutron scattering® and computer simulation”**! do not find it
easy to detect reptation: the characteristic time-scale in these experiments
is often shorter than 7,. Recently, however, it has been reported that
indications of reptation are observed in some situations.* 3

Dg = (1.58)

7.3.6 Semidilute and concentrated solutions

So far we have been considering polymer melts. It is expected that the
same picture will hold in semidilute and concentrated solutions. Though
this is generally believed to be the case, a few remarks must be made.
(i) In semidilute solutions, the excluded volume effect and the
hydrodynamic interaction become important for dynamics on a length-
scale shorter than the correlation length &£ (or the hydrodynamic
screening length &y). The problem of how this affects the reptation
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picture is delicate. However, in the case of a ‘§ood solvent, certain
conclusions can be drawn from scaling arguments.™ 7

Consider for example the maximum relaxation time Tn.,, the steady
state viscosity 7o, and the plateau modulus G§. If one imposes the
condition that they are invariant under the scaling transformation given
by eqn (5.138), one can show that

,N3Vb3
Tonax = 0 T fi(c/c*), (7.59)
B
n0 = nsf(clc*), (7.60)
and

G =§k,1f3(c/c*), (7.61)

where c* is the overlap concentration

Nl-3v

c* = PRt (7.62)

The concentration dependence can be determined if one imposes a
further condition that eqns (7.59)—(7.61) must be consistent with the
reptation prediction:*

tmaxocNa, 770°‘N3, G%I))“Nos (7'63)
then
nsN3vb3 c (3-3v)/(3v—-1)
T
_ (< 3/(3v~1) 3 15
Mo= 1 « M°p™", (7.65)
and
0 c c 1/(3v-1) o4 _
G =ﬁk3T(c—,) x MO, (7.66)

(The last expressions indicate the result when v is equal to 3/5).
Experimentally, eqns (7.64)-(7.66) seem to hold at least approximately in
the semidilute regime,**” though the exponents in the molecular weight
dependence of 7, and 7, are slightly larger than 3, and the exponent in
the concentration dependence of G{¥ is somewhat higher than 9/4
depending on the quality of the solvent.

It must be mentioned that whether dynamical scaling holds for systems dominated by the
topological interaction is still a matter of debate, though eqns (7.64)-(7.66) seem to be in
agreement with experimental results,
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(i) At higher concentration, the effect of the excluded volume and the
hydrodynamic interaction becomes less important. If we disregard these
effects, the dynamics is described by the same model as in melts except
that a and £ now depend on concentration. Experimentally it has been
found®**** that

G0 xp? (7.67)
which implies
axp~Z (7.68)

The concentration dependence of T, and 7, is delicate since the friction
constant ¢ depends on the concentration in a nontrivial way.*f

7.4 Other relaxation modes

7.4.1 Discrepancy between the theory and experiments

Although the theory given in the previous section is largely in agreement
with experiments on linear viscoelasticity, there remain certain
discrepancies.

(i) The theoretical molecular weight dependence 1oxM> and Tpax *
M? is weaker than the experimental one; the measured exponent is
higher than 3, ranging from 3 to 3.7.34%

(ii) The theoretical relaxation modulus G(f) is too close to a single
exponential compared to the experimental modulus.”® For example, the
experimental value of J’GY’, which measures the deviation from the
single exponential behaviour of G(¢), is between 2 and 3**! as against 6/5
for the theoretical result of eqn (7.48).

Part of these discrepancies can be attributed to the molecular weight
distribution, which seriously affects the value of J.%* On the other hand
detailed comparison with experimental results indicates that not all the
discrepancy can be resolved by the molecular weight distribution.

The discrepancy in the exponent of the viscosity has been a matter of
debate which is not yet settled. Various modifications of the reptation
picture have been proposed. For example, Wendel and Noolandi®
argued that if the polymers are trapped by some tight knots with an
extremely long lifetime, the diffusion along the tube becomes non-
Fickian and this gives a higher exponent in n,< M*. However, such tight
knots, if they exist, would create a rubbery plateau with extremely long

1 A similar problem exists in the melt, where it is often observed that the viscosity does not
follow the Rouse behaviour at small molecular weights much less than M,. This is attributed
to the fact that for short polymers the segmental friction constant { depends on the
molecular weight.>?
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relaxation time, which no viscoelastic data seem to support. Curtiss and
Bird* suggested that the segmental friction constant { may depend on
the molecular weight, but this hypothesis seems to contradict the result of
the diffusion experiment. Another possibility suggested by Ball*® takes
into account the long-range correlation in the motion of vacancies needed
for the reptation motion to take place. This has been studied by
computer simulation,>® but the result is not yet conclusive.

At present, a more consistent explanation seems to be that given by
Graessley,® who pointed out that the observed viscosity and the
relaxation time are smaller than the calculated ones. Using eqns (7.32),
(7.33), (7.46), and (7.47), one can show that

15 M\ 15 M\?
no) =3 moM) (37 ) =7 75000 (37) (7.69)
and
4 3

On the other hand, a widely accepted empirical formula is

(M) g for M<M,, (7.71)
,nSe!P)(M) - y c3.4
ﬂo(Mc)(ﬁ) for M>M,, (7.72)

where M, is a certain molecular weight which is two or three times larger
than M,. Using M, =2M,, and ny(M.,) = n(M.)(M./M,), eqn (7.69) is
written as

1§ (M) = 157 (37 ) (1.73)

17§"°)(M) is about 15 times larger than n§{™ (M) at M., but the discrepancy
decreases with increasing M and diminishes at M = (15)"**M, ~ 800M,
(see Fig. 7.7). Graessley thus conjectured that although the
Pure reptation behaviour will be observed for very large molecular
weight, there is a large cross-over region in the viscosity from the
Rouse-like behaviour to the pure reptation behaviour, which gives an
apparent exponent larger than 3.

Unfortunately since no data are available for molecular weights higher
than 800M_, which is 3 X 107 for a polystyrene melt, the crucial test of
Graessley’s conjecture has not been given. However, it is obvious that
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any relaxation process which occurs concurrently with reptation de-
creases the viscosity and hence reduces the discrepancy between the
theory and experiment.

7.4.2 Contour length fluctuation and tube reorganization

Two relaxation processes have been suggested to alter the pure reptation
behaviour discussed in Section 7.3.3.

Contour length fluctuation. As was shown in the previous chapter, the
contour length fluctuation reduces the disengagement time 7,
significantly. From eqns (6.20), (6.101), and (7.54), the disengagement
time T of a chain with fluctuation is given by

M 172y 2
TP = t&m(l - X'(——e) ) (7.74)
M
where X' is estimated as 1.47*V/(4/5)=1.3.>” For M/M, = 50 the ratio
between 37 and TP is about 0.67 which displays the considerable effect
of the contour length fluctuation in the region where the polymers are
usually regarded as ‘fully entangled’. A crude calculation®”"® indicates
that the discrepancy in the viscosity and the steady state compliance is
significantly improved if the contour length fluctuation is taken into
account.

Tube reorganization. So far, it has been assumed that the tube is fixed in
the material and its conformational change occurs only at the ends. It is
conceivable that the conformational change of the tube can occur in the
middle.* For example:

(i) Constraint release: The topological constraints for a polymer can be
released (or created) by the reptation of the surrounding polymers as
shown in Fig. 7.8. This will cause the conformational change of the tube
in the middle. A model describing this process is to regard the
conformational change as a local jump of the primitive chain. Since the
jump rate is of the order 1/t,, this process has a negligible effect on the
longest relaxation time.”>® However, the process gives an additional
relaxation to G(f) in the plateau region,’ and improves the value of
JOGQ.

(ii) Tube deformation: If a polymer is in a strained conformation, it
will tend to relax the strain by creating the deformation of the
surrounding polymers. This effect may be handled by considering the
deformation of a strained chain placed in a viscoelastic medium. So far
no quantitative estimation of this effect has been done.

Though these processes are conceivable, estimation of their effect is
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Fig. 7.8. Release and creation of the topological constraints. (a) The topological

constraints imposed on the chain A by C is released and recreated by the motion

of C. (b) In the two-dimensional representation, this process can be represented

by the disappearance and reappearance of the obstacle C. The process causes the
deformation of the tube in the middle.

still at the level of conjecture, and there are other theoretical
treatments.*>** Experimentally, in linear polymers with narrow molecular
weight distribution, it seems that the major difficulty of the theory can be
resolved by including the contour length fluctuation. On the other hand
the tube reorganization is believed to be important for polymers with
broader molecular weight distribution,® or long branches, which will be
discussed later.

7.5 Stress relaxation after large step strain

7.5.1 Experimental setup

Having seen the characteristic features of the linear viscoelasticity, we
shall now study the nonlinear viscoelasticity. Before studying the general
Situation, we shall first consider a simple case, the stress relaxation after
Stepwise deformation.'*** Suppose that at time ¢ =0, a polymeric liquid
1s suddenly deformed homogeneously. The deformation creates a stress
Which gradually relaxes with time. Our problem is to find how this
relaxation takes place.

For a homogeneous deformation, we may assume without loss of
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generality that a point r in the material is displaced to
ror'=E-r (7.75)

The tensor E is called the deformation gradient.t Two particular cases
are often studied experimentally.
(i) Shear (Fig. 7.9a), for which the material is deformed to

Te=r+V¥n, I,=nr,r.=r,. (7.76)

This deformation is characterized by a single parameter y, the shear
strain. Since the deformation has a reflection symmetry with respect to
the xy plane, the stress components o,,(=0,,) and o,.(=0,) vanish
identically. Howeves, the shear stress o,, = 0,, and the diagonal stresses
O, Oy, and o,, generally do not vanish. Since the isotropic part of the
stress has no significance, only two of the diagonal components have
meaning. The stresses

N =0,—0, (7.77)
and
N,=o0,, -0, (7.78)

are called the first and the second normal stress differences. Thus the
response of the shear deformation is characterized by three stress
components o,,, N; and N,, each of which are nonlinear functions of y
and ¢.

(ii) Uniaxial elongation (Fig. 7.95). Here the sample is stretched in the

T A general deformation is described by the function »' = ’(r) which connects the position
vectors r and r’ before and after the deformation. In such a case E,4 is given by dr,/dr.
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z direction by factor A. Since the volume is unchanged, this causes a
contraction in the x and y directions by a factor 1/VA. Hence, the
deformation is described by

1 , 1

= W I, ry= W Ty,
In this deformation, the off-diagonal components of the stress vanish and

two of the diagonal components o,, and g, are equal to each other. Thus
the response is characterized by a component

Or =0,; — Oy (7.80)

which is called the tensile stress.

r,=Ar,. (7.79)

7.5.2 Calculation by Rouse model

First we calculate the stress relaxation using the Rouse model. The stress
tensor (eqn 7.4) is expressed by the normal coordinates X, of the Rouse
model (see Section 4.5.2, eqn (4.137))

c - -]
Oap = 55 2 Kip (X (1) X5 (1)) (7.81)
p=1
where
_ 67%kpT

According to Rouse dynamics, the position of the segments are
changed in the same way as the macroscopic point;} thus if R,(—0) and
R,(+0) are the positions of the segment before and after the
deformation,

R, (+0)=E-R,(—0) (7.83)
or

X, (+0) = E - X,(-0). (7.84)

Since the system is in equilibrium for 1 <0

ksT
8.,
k,

(Xpa(—0)X,6(=0)) = (7.85)

¥ This is often called the affine deformation assumption, but it is actually derived from the

gevin equation for the Rouse model (eqn (4.139)). For an instantaneous deformation,
the velocity gradient K,g(¢) becomes so large that it dominates the other terms on the right-
hand side of eqn (4. 139) The equation for X, then becomes the same as that for the macroscopic
Point (see eqn (7.151)), and therefore the change of X, becomes affine.
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From eqns (7.84) and (7.85), it follows that

(Ko (HOXy5(+0)) = BB K0 Xy (~0)) = EonEp By 2
- By ()2 (786
where °
B.s(E) = E,.Ep, (7.87)

which is called the Finger strain. For t >0, (X,.(t)X,5(f)) satisfies eqn
(4.141) with x5 =0:

2
':7 (Xpa () Xp5(1)) = --2% ((X,.a(t)x,,ﬂ(z)) — 8up "7”}) (7.88)

Equation (7.88) is solved with the initial condition (7.86) by

(Zoa DKo (1) = 2L (B, (Eyerp(~2071/5)

+ 8up(1 - exp(=2pt/T5))].  (7.89)

Substituting eqn (7.89) into eqn (7.81) and dropping the isotropic term
we have

0up(0) = = ks TBop(E) 3, exp(~201 ) (7.90)

= B.s(E)G(?) (7.91)

where G(¢) is the linear relaxation modulus given by eqn (7.31).
For a shear deformation, E is given by

1 vy O
E=|0 10 (7.92)
0 01
so that
1+y2 vy 0
B = Yy 10
0 01
and
Oy = vG(2), (7.93)
N, = y*G(2), (7.94)
N,=0. (7.95)

Note that the shear stress is a linear function of y even if v is large.
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For the uniaxial elongation, the tensile stress is given by
1
op = (112 —Z)G(t). (7.96)

The Rouse-like behaviour is expected to be seen in the initial stage of the
relaxation (1< t,).

7.5.3 Calculation by reptation model

Now we consider the behaviour for ¢ > 7, using the reptation model. To
calculate the stress, we have to know

(i) How the conformation R(s, ¢) of the primitive chain is changed by
the macroscopic deformation, and

(ii) How the stress is calculated for a given conformation R(s, ¢).

We shall discuss these problems separately.

Expression for the stress tensor. The microscopic expression for the stress
tensor can be obtained by taking the average of eqn (7.4) for a given
conformation of the primitive chain.®* Alternatively, it can be derived by
an elementary argument explained in Fig. 7.10. In both cases the result is

F(t)

Fig. 7.10. Consider a plane of area A, normal to the z axis. The stress
component o,, is given by the force (per area) S,/A acting through the plane.
Consider a part of the primitive chain between s and s + As. If this part is within
the distance u.(s, t)As from the plane, it penetrates the plane and gives a
contribution of F,(s, t) = F(f)u.(s, t) to S,, where F(t) is the tensile force acting
along the primitive chain. Since the number of the primitive chain in unit volume
is (c/N), the number of such part is (c/N)Au,(s, t)As, whence

=% <I—f—,Au,(s, £)AsE.(s, t)> - I%A( fdsp(z)u,(s, (s, :)).

Thus the force per area S, /A gives eqn (7.97).
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written as
Oup(t) = % < j dsF(t)u, (s, ug(s, t)> (7.97)

where u(s, t) = OR(s, t)/3s is the unit vector tangent to the primitive
chain and F(t) is the tensile force acting along the primitive chain. In the
equilibrium state F(t) is given by (see eqn (6.83))
3kBT

N

while in the non-equilibrium state in which the contour length is L(t),
F(t) is given byt

F(t)= (7.98)

F(t)=
From eqns (7.97) and (7.99)

L0, (1.99)

;31:22 ?"SL(‘)<“«(S' g (s, 1) = ‘6«a)> (7.100)

Oup(t) =

This formula shows that the stress is determined by two quantities, the
contour length L(t) and the orientation of u(s, ?).

t Here it is assumed that the tensile force is constant along the chain. This assumption is not
correct immediately after the deformation because inmitially the Rouse segments are
stretched or compressed along the primitive path depending on their direction (see Fig.
7.11). However, such local imbalance in the segment density is adjusted in the time 7., and
for ¢ > =, the tensile force F(s, f) can be regarded as independent of s.

t Curtiss and Bird*> derived a slightly different stress formula, which includes an adjustable
parameter called the link tension coefficient &. However, this formula is not consistent with
the stress optical law unless £ =0. In the case of £ =0, the formula becomes essentially
equivalent to egn (7.120) which is a special case of eqn (7.100).

Equation (7.100) is also derived from the principle of virtual work. The free energy per

unit volume is
_ € 3kpl (Lt 2)
d-—_—b!—l—’

Under a virtual deformation d¢,4, L(¢) changes by

oL = j dsBegite (5, )iy (s, 1)
0

whence
L(1)

= £ 20T (LOBLW)) = ewp ST (L) [ dstr(s, s, 1)
0

Zlﬂ

which gives eqn (7.100).
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Deformation of the primitive path. Our next question is how the
conformation R(s, ) of the primitive chain is deformed by the macro-
scopic strain. The simplest assumption is that the deformation is affine,
i.e., that the primitive chain (or the central axis of the tube) is deformed
in the same way as the macroscopic deformation. Thus the point
R(s, —0) on the primitive chain is displaced as

R(s, —0)— E - R(s, —0). (7.101)

Let us now study how this changes the contour length L(¢) and the
orientation of u(s, ¢). This is illustrated in Fig. 7.11.

(i) The change of the contour length: The transformation (7.101)
changes the length As of a line segment on the primitive chain to

A5 = As |E - u(s, —0)|. (7.102)
The length A§ can be larger or smaller than the original length As

depending on u(s, —0). Since the distribution of u(s, —0) is isotropic, the
average ratio between A§ and As is given by

a(E)=(|E - u|)o (7.103)

a(E)L

r~t

0

Fig. 7.11. Deformation of the primitive chain by macroscopic strain. Here for the

purpose of explanation, the primitive chain is represented by randomly connected

line segments. According to the affine deformation assumption, a line segment

Iepresented by r is transformed to E - r. Thus the length As = |r| and the direction
u=r/|r| are changed as As— |E - u| As and u— E - u/|E - u|.
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where (. ..), denotes the average of u over the isotropic state,

du
('“)":IZ}““ (7.104)

For any deformation which conserves the volume (det |E| = 1), it can be
shown that"’

a(E)=1. (7.105)

Thus the contour length of the primitive chain immediately after the
deformation is given by

(L(+0)) = (E)L (7.106)

which is always larger than L.
(ii) The change of the orientation: To denote the orientation of the
primitive path, we define the orientational tensor

Sep (s, 1) = (ua(s, Dug(s, ) —36.5) (7.107)

which vanishes in the isotropic state, but does not vanish in the oriented
state. Since the distribution of u(s, —0) is independent of s, S,5(s, +0)
will also be independent of s and can be written as

Saﬂ (S, +0) = Qaﬂ (E) (7 108)

To calculate Q,5(E), let us consider the probability distribution function
f(u, s, t) for the tangent vector u(s, ¢). (f(u, s, t) is the probability that
the tangent vector at s and ¢ is in the direction u.) Obviously

1

flu, s, —0)= i (7.109)
By the deformation, the unit vector # changes as
. E-u
u_m_lf-ur (7.110)

The probability that an arbitrarily chosen point of the deformed primitive
chain is in the direction of u’ = E - u/|E - u| is proportional to |E - u/|, the
length of such a part. Thus

é::l)f(u, s, —0) (7.111)

where C is the normalization constant which is determined from the
condition

f(u',s, +0)= deu |E - u| 6(u' -

1= deu’f(u', s, t) (7.112)
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to be
C 1= (4m)! f du |E - u] = (|E - u])o. (7.113)
Then
1 , , E-u
fu, s, +0)=4n<|5.’|)oj’du E-u '6(u—|E-u'|) (7.114)
so that

Q.p(E) = Iduuauﬂf(n, s, +0) —3d,5

E-u),(E-
=<( Tf)f'(vI ")”>0/(1E-u|),,-ga,ﬂ. (7.115)

Stress relaxation. Now it is easy to calculate the stress relaxation.
According to the model described in Section 6.4, the relaxation of L(t)
occurs on the time-scale of Tz, while that of orientation occurs on the
time-scale t,. Thus the stress relaxation for ¢ > 7, occurs in two steps (see
Fig. 7.12).

(i) Contour length relaxation: In the time-scale of g, S,(s, ) can be
regarded as equal to the initial value Q,g(E), so that eqn (7.100) is

(@)

Fig. 7.12. Explanation of the stress relaxation after large step strain. (a) Before
deformation the conformation of the primitive chain is in equilibrium (¢ = —0).
(b) Immediately after deformation, the primitive chain is in the affinely deformed
conformation (¢ = +0). (c) After time tx, the primitive chain contracts along the
tube and recovers the equilibrium contour length (¢t = 1z). (d) After the time 7,
the primitive chain leaves the deformed tube by reptation (¢ =1,). The oblique
lines indicates the deformed part of the tube. Reproduced from ref. 107.
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written as

C 3k3

o) =5 gz (LUOD)Qup(E) for z.<t<te  (1.116)

Here (L(t)*) is replaced by (L(t))? since the distribution of L(¢) is quite
narrow (the error (AL?)/{L?) being of the order of a/L = M,/M.). The
relaxation of (L(f)) can be calculated by the model described in Section
6.4.2.* However, for simplicity, we shall use here

(L(t)) = L[1+ («(E) ~ 1)exp(~—1/7x)] (7.117)
which simply states that (L(f)) decreases from a(E)L to L with the
relaxation time 7z. From eqns (7.116) and (7.117), it follows that

Oup(t) = G,(1 + (a(E) — 1)exp(—1/1))*Q.s(E) for T.<T<14
| (7.118)
where

3k,T . b?
G. =§ L= 3kBT—c~— (7.119)

(ii) Disengagement: For t > 15, L(t) is at the equilibrium value L so
that eqn (7.100) is written as

[ 3k8

ap(t) LJ’ds(u,,(s, t)uﬂ(s, t) 36,,5)

=G.7 [as j Sup(s, 1) (7.120)

Now S,5(s, t) is equal to Q,g(E) if the primitive chain segment s in the
deformed tube, and is zero if it has left the tube. Since the probability
that the primitive chain segment s is in the deformed tube is y(s, t) (see
Section 6.2.2)

Sa8(5, £) = Qs (E)Y(s, 1). (7.121)
Hence

028 = G Qun (B 7 [ sw(s, 1)

=G.0u(E)Y() 127 (7.122)

Here y(¢) is given by eqn (7.40). Combining eqns (7.118) and (7.122) we
finally have

0ap(t) = GeQap(E)(1 + (a(E) — Dexp(—t/Tr))¥ (1) (t=7.). (7.123)
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In the case of a shear deformation, we may write a(E) and Q,4(E) as
a(y) and Q,4(y), respectively. For small y, Q,,(y) and a(y) are easily
calculated.

a(y) = {(1 + 2yuu, + y’u3)"*)o
= (1+ yuu, — 3y%uiul + 3yul)o=1+%y*+ O(v")  (7.129)
and

_ 1 (u, + yu,)u
e =2 <(1 s rz’;ti)"z>o

=y(uy—uai)o+ O(Y’) =1y +0(y’).  (7.125)
Thus egn (7.123) becomes

0(1) =15YG (1) + O(Y’). (7.126)
Hence, the relaxation modulus in the linear viscoelasticity is given by
G() =G y(). (7.127)
This determines the plateau modulus to be
4 cb?
GQ)=%G,=§-‘;2—ICBT (7.128)

which gives eqn (7.54).
We shall now compare the results for large strain with experimental
results.

7.5.4 Comparison with experimental results

Shear. Extensive experiments on the stress relaxation for shear deforma-
tion have been done by Osaki et al.% For convenience of comparison,
we shall represent the relaxation of the shear stress by the nonlinear
relaxation modulus defined by

1
G, y) =;Oxy(t, ?)- (7.129)
In the limit of y— 0, this reduces to the relaxation modulus of linear
viscoelasticity.
Equation (7.123) gives

G(t, v)=G. gﬁm (1+ (@(y) - Dexp(~t/70)(0)

=h(y)G(OQ + (a(y) — 1)exp(—t/1z))’ (7.130)
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Fig. 7.13. Theoretical curve of the nonlinear relaxation modulus G(t, y). The
case of 7,/tz =100 is shown. Reproduced from ref. 64.
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Fig. 7.14. Nonlinear relaxation modulus G(f, y) for polystyrene solution of
chlorinated biphenyl at 30°C. The molecular weight of the polymer is 8.42 x 10°

and the concentration is 0.06 g/cm®. Magnitudes of shear y are <0.57, 1.25, 2.06,
3.04, 4.0, 5.3, and 6.1, from top to bottom. Reproduced from ref. 69.

10°
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where G(#) is the relaxation modulus of linear viscoelasticity and

h(y) = Q. () (Y). (7.131)

Equation (7.130) is plotted in Fig. 7.13. For small y, G(t, y) decays
roughly in a single exponential manner with relaxation time 7,. For large
y, G(t, v) shows another relaxation characterized by rx corresponding to
the relaxation of the contour length. Such behaviour has actually been
observed experimentally®* as shown in Fig. 7.14. Detailed comparison
reveals good agreement between the theory and experiment.

(i) Osaki et al® found that at large ¢, curves in Fig. 7.14 for various y
can be superimposed by a vertical shift (see Fig. 7.15). This implies that,
for large t, G(t, y) can be written as a product of two functions, one
depending on time and the other on strain. This agrees with eqn (7.130),
which is written for ¢ > 1 as

G(t, v) = h(7)G(0). (7.132)

The function A(y), called the damping function, is found to be
independent of the molecular weight and concentration over a wide
range.®*"® Figure 7.16 shows the comparison between the theoretical
damping function and the experimental one. The agreement is very good
considering that k() includes no adjustable parameters.

10°

10°

G-h™'(Pa)

10'

| | 1
10° 10" 10° 10°
t {sec)

Fig. 7.15. Reduced relaxation modulus G(t, y)/h(y) derived from Fig. 7.14.

Each curve for y >1.25 in Fig. 7.14 is shifted vertically by an amount —log h(y)

so that it superposes on the top curve in the long time region. 7} indicates the

longest relaxation time, and 7 the characteristic time below which the superposi-
tion is not possible. Reproduced from ref. 69.
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Fig. 7.16. h(y) determined from the procedure explained in Fig. 7.15. Filled
circles represent polystyrene of molecular weight 8.42x 10° and the unfilled
circles of 4.48 x 10°. Directions of pips indicate concentrations which range from
0.02 gem® to 0.08 gcem®. The solid curve represents the theoretical value (egn
(7.131)), and the dashed curve the result of the independent alignment
approximation {eqn 7.187). Reproduced from ref. 69.

(ii) Experimentally, the first relaxation can be characterized by the
time 7, below which the factorization of G(¢, y) is not possible (see Fig.
7.15). Osaki et al.® found that the ratio between 7; and the Rouse
relaxation time 7z is about 4.5 and essentially independent of the
molecular weight and concentration.

(iii) The relaxation of the other stress components N,(z, y) and
Ny(t, y), measured by birefringence, have precisely the same time
dependence as o,,(t, ¥), and their ratio depends only on y. This agrees
with eqn (7.123), according to which

Ox(y) — 0,,(¥)

Ny, y) = 0 (7) Oy(t, 7) (7.133)
xy
mt, py= 2280 ) (7.134)

Since it can be proved' that

Qu(7) — Oy (¥) = 70 (¥), (7.135)
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Fig. 7.17. Quantity —N,/N, is plotted against magnitude of shear y. Sample:
polystyrene solution in chlorinated biphenyl (M, =6.7 X 10°, p =0.40 gcm™).
The number of entanglements Z corresponds to about 14. The solid line is the
theoretical value, —(Q,,(7) = Q..(¥))/(Qu(¥) = Q,,(¥)). The dashed line is the
result of the independent alignment approximation. Reproduced from ref. 67.

eqn (7.133) is written as

Ni(t, ) = v0,,(t, 7). (7.136)

This relation, first found by Lodge and Meissner’* using a phenomenolo-
gical argument, has been well confirmed.®®” The ratio between the
second normal stress difference N,(#, y) and the first normal stress
difference N,(¢, y) is shown in Fig. 7.17. The experimental values are
again in reasonable agreement with the theory.

Uniaxial elongation. For uniaxial elongation, the tensile stress is given by

or(t, A) = [1+ (a(A) = Dexp(—t/tr) *f (A)G(¢). (7.137)
Here a(A) denotes a(E) of uniaxial elongation and

fA) =8(Q::(2) = Quu(2)). (7.138)
Explicit formulae for a(4) and f(4) can be calculated analytically,”
@(A) =341 + A(R)) (7.139)

and

15(A°+1/2) 1 (1 42% -1

TR=2@ -1 174 2713?"(’1)) (7.140)
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where

sinh~![(A* — 1)'?]
(G )

The stress relaxation for uniaxial elongation has been studied by Ferry

et al.,”™ and the result has been well fitted by eqn (7.137) if the effect of
the molecular distribution is taken into account.

7.5.5 Discussion

As we have seen the theory has predicted many aspects of the nonlinear
stress relaxation. However, there are some experimental results which
are not in accordance with the theory and need some discussion.

Anomalous stress relaxation in shear flow. Osaki et al.* found that the
nonlinear relaxation modulus G(z, y) of polystyrene solutions does not
agree with the theory for very-high-molecular-weight samples for which

Mp > 10° g/em®. (7.142)

For these samples, the stress near 7, decreases much more steeply than
predicted by the theory, and shows complex M, p dependence. A similar
anomaly is also reported by Vrentas et al.” This result is puzzling since
the theory should become most valid in the high molecular weight limit.
A possible explanation, however, was given by Marrucci and Grizzuti,”
who pointed out that the theoretical damping function A(y) has a region
where the differential rigidity modulus 3(yh(y))/dy is negative. In this
region, the elastic energy can be lowered by microscopic phase separa-
tion, each phase having different local shear strains. Indeed the observed
anomalous behaviour can be reproduced with suitable assumptions.””
Experimental evidence of such microphase separation is, however,
lacking and further study is expected.

Tube reorganization. The theory described in Section 7.5 includes two
essential assumptions; (i) the conformation of the tube remains un-
changed and (ii) the contour length of the tube returns to the equilibrium
value L even if the environment is not in equilibrium. The validity of
those assumptions is not established and it is worthwhile to study the
consequences of the theory based on other assumptions.

Marrucci et al.”»”" assumed that the volume of the tube remains
constant by deformation, and derived a result which has the same time
dependence as eqn (7.122) but different strain dependence. Though an
experiment on PMMA? seems to fit with the modified formula, caution
is needed in accepting the modification since critical experiments need



NONLINEAR VISCOELASTICITY 255

data over a large time-scale and for a monodisperse sample, but the
quoted experiment does not meet these conditions.

Viovy et al.”® argued that as the contour length of the surrounding
primitive chain contracts, there will be an extra relaxation by the release
of the topological constraints. They proposed a theory which gives a
slightly different relaxation behaviour for 7 < rz. Though this proposal
seems plausible, precise experimental evidence which supports the
improved formula has not yet been given.

As in the case of linear viscoelasticity, the effect of the tube
reorganization will play an important role in the molecular weight
distribution. The problem of how it affects the nonlinear behaviour is
interesting but unsolved.

Neutron scattering. In a series of experiments, Boué ef al.” have studied
by neutron scattering the conformational relaxation of the labelled chain
after the stepwise deformation. In the short time-scale, the observed
relaxation is well described by the Rouse dynamics. In the long time-scale
(near tg), no clear indication has been found so far for the contraction of
the contour length. Various reasons for this behaviour are conceivable
such as the limited range of the scattering wave vector or polydispersity
of the sample. On the other hand the results may indicate the importance
of the tube deformation in the nonequilibrium state.*

Theoretical calculations of the scattering intensity based on the
reptation dynamics are given in refs 81-83.

7.6 Nonlinear viscoelasticity

7.6.1 Phenomena of nonlinear viscoelasticity

We shall now consider the nonlinear viscoelasticity in the general
situation. Experimentally a variety of interesting phenomena have been
found in the nonlinear region. Leaving detailed description of them to
the literature of rheology,'®'®'® we shall limit ourselves here to a few
typical aspects of nonlinear properties.

Shear flow. The general shear flow is characterized by the time-
dependent shear rate x(¢):
v, = k(2)y, v, =0, v,=0. (7.143)

By symmetry, the stress components o,, and o,, again vanish identically,
so that the relevant stress components are the shear stress o,, and the
normal stresses N, = o, —0,,, and N, =0,, — 0,,, which are nonlinear
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functionals of x(¢). Typical flows are:

(i) Steady shear flow. In the steady state, the stress depends only on k.
The steady state viscosity n(k) is defined by

(k) = oy (x)/k. (7.144)
The normal stresses N; and N, are usually expressed by
W, (k)= Ny(x)/x* (first normal stress coefficient)  (7.145)
and
W,(k) = Ny(k)/k* (second normal stress coefficient) (7.146)

An example of n(x), W,(x) is shown in Fig. 7.18. Both quantities
decreases significantly with increasing shear rate. For large shear rate, N,
becomes much larger than o,, and this causes many interesting
phenomena known collectively as the Weissenberg effect.'®
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.
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Fig. 7.18. Steady-state viscosity n(x) and the first normal stress coefficient

W,(x). Sample: 8% solution of polystyrene (M =3.0x10°) in chlorinated

biphenyl. Open circles represent results from Weissenberg Rheogoniometry and
closed circles results from the birefringence method. Reproduced from ref. 84.
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n*(t;x) (poise)

| | | |

|
10° 102 10" 10° 10' 10°

t (sec)
Fig. 7.19. Shear stress growth function at several shear rates for solution of

polybutadiene (M = 3.5 X 10°). In this sample 7, is about 1 sec. Reproduced from
ref. 102,

(ii) Stress growth. Figure 7.19 shows the growth of the shear stress
when a shear flow of constant shear rate is started (i.e., x(t) = xk©(r)).

Here n*(¢; k) is defined by
n*(t; k) = 0, (t; )/ k. (7.147)
It is seen that for large x the shear stress reaches a maximum before

reaching the steady state value. This phenomena is called the stress
overshoot. Sometimes the overshoot is observed for the first normal

stress difference at higher shear rate.
Elongational flow. The elongational flow is given by
v, =—3&(t)x, v, =-3&@t)y, v, =é()z. (7.148)

When the flow of constant elongational rate ¢ is started, the tensile stress
0., — 0, increases with time and reaches the steady state. The steady

state elongational viscosity is defined by

. 0,7 — Oxy
ne(€) = 5 (7.149)

For small ¢, it follows from the linear constitutive equation (7.11) that
ne(€) approaches 3n(0). An example of 7.(¢) is shown in Fig. 7.20.
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Fig. 7.20. Shear viscosity n(x) and elongational viscosity nz(£) in a steady flow
of monodisperse polystyrene (M,, = 2.54 x 10°). Reproduced from ref. 85,

7.6.2 Deformation gradient tensor

For many purposes it is convenient to describe the history of the velocity
gradient by another quantity. Consider the motion of a point r,(¢) fixed
on the material. In the homogeneous flow in which the velocity field is
given by

Va(r, ) = Kap(t)1s (7.150)

the point moves as
(% ro(t) = Kap(O)rp(2). (7.151)

Since this is a linear equation, its solution is written as
ra(t) = Eqap(t, t')1p(t'). (7.152)

This is analogous to eqn (7.75). The tensor E(z,t') denotes the
deformation gradient at time ¢ referred to the state at time ¢#'. From eqn
(7.152) it follows that

Eop(t, t')y=E,, (t, t")E4(t", t'). (7.153)
Note that eqn (7.153) holds for arbitrary ¢” from — to +o,
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From eqns (7.151) and (7.152), E,4(t, t') satisfies

a ' ’
Ey ap(t, 1) = Koy () E (8, t'). (7.154)
This equation, together with the initial condition

Eap (t, t) = 6‘,5 (7. 155)

determines E(t,t') for given K(¢). Conversely, k(¢) is obtained from
E(1, ') by eqn (7.154).
For the shear flow, E(t, t') is given as

1 y(,t') O
E(t,t)=10 1 0 (7.156)
0 0 1
where
4
y(t, t') = f de"k(1"). (7.157)
4
For the elongational flow
A, t')"1? 0 0
E(t,t')= 0 AL, t') V2 0 (7.158)
0 0 Aty t')
where
t
A, 1) =exp( f dt"é(t”)). (7.159)

7.6.3 Constitutive equation derived from Rouse model

For the Rouse model, the constitutive equation is obtained in a simple
closed form. To calculate the stress given by eqn (7.81), we solve the
time evolution equation for (X,,()X,s(f)) (see eqn (4.141)):

aét (Xa()X,5(0)) =§l [2k5Tbup — 2k { Xy () X,5(1))]

+ Ko (X () Xp(1)) + K () Xpu (0 X, (). (7.160)

Since this is a linear differential equation of the first order, it can be
solved by the standard method of the variation of constants (see ref. 19
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Chapter 10, for example). The result is

(Xpu()X,5(2)) = TE,,,(:, t')Eg, (t, t")exp[—2p*(t — t')/ tx]

1 4
=— j dt'B.s(E(t, t')) -§7 exp[—-2p%(t—t')/tg]). (7.161)
kp J_ ot

Substituting this in eqn (7. 81) we have

aG(t—t
Oup(t) = ] dt’ ( o ) B,s(E(t,t')) (7.162)
where G(t) is the linear relaxation modulus of the Rouse model (eqn
(7.31)). It is easy to check that eqn (7.162) gives eqn (7.91) for the case
of step deformation.

In the case of steady shear flow, B,g(E(t, t')) is given by

B, (y(t, 1)) =(t—1t')x, (7.163)
Bxx(Y(t’ t')) - Byy(Y(t: t,)) = (t - t')zxzr (7 164)
B,,(y(t,t')) — B..(y(t, t')) = 0. (7.165)
Hence

0,(K) = xfdt (t-1) 5 G(t—t )= xfd: G(t') = nox, (7.166)
Ny() = j dr(e =Y o 2 G-ty =202, (1.167)

and N
Nx(x) =0, (7.168)

where 7, and J are given by eqns (7.33) and (7.34). Thus the shear
viscosity n(k) and the first normal stress coefficient W,(x) are independ-
ent of the shear rate.

7.7 Approximate constitutive equation for reptation model

We shall now derive the constitutive equation for reptation dynamics. To
simplify the analysis, we assume that the contour length of the primitive
chain remains at the equilibrium value L under macroscopic deformation
(inextensible primitive chain). This assumption is valid if the characteris-
tic magnitude of the velocity gradient is much less than 1/7g, i.e,

KTg<1. (7.169)
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Since nonlinear behaviour starts to be observed when the characteristic
magnitude of the velocity gradient becomes of the order of 1/7,, the
assumption is not restrictive for a polymer of tz/7,«< 1, i.e., M> M,. In
practice, the condition (7.169) is not always satisfied, and the elongation
of the contour length can be important, but this will not be considered
here.

For the sake of simplicity, we shall use a slightly different notation in
this and the following two sections: the equilibrium contour length will be
denoted by L (because L and L need not be distinguished for the
inextensible model), and the segments of the primitive chain are labelled
from —L/2 to L/2. (Thus the segment 0 corresponds to the middle of the
chain.)

7.7.1 Deformation of the primitive chain

First we express the transformation rule of the inextensible primitive
chain in mathematical terms. Let R(s) and R(s) be the conformations of
the primitive chain before and after the deformation. The transformation
rule is explained in Fig. 7.21, i.e.,

(a) The segment in the middle changes its position affinely, i.e.,

R(0) = E - R(0). (1.170)
(b) The segment § lies on the curve E - R(s), so that
R(E)=E-R(s) (7.171)

Fig. 7.21. The deformation of an inextensible primitive chain by a macroscopic
strain. The new conformation A’O’B’ is on the curve A"O”B”, which is the affine
transformation of AOB. The new position of a segment, say C, is determined
from the condition that the contour length O'C’ is equal to OC, where O’ is the
affine transformation of O and coincides with O”. Reproduced from ref. 108.
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where § is the contour length along the curve E-R(s') from s'=0 to
s'=s, 1.e.,

§ = f ds’ |E - u(s")|. (7.172)

From eqn (7.171), the transformation rule for the direction u(s) is
obtained as

u(f)——R(&')— E *R(s )—5—-§E *R(s) (7.173)

Os
T E - u(s). (7.174)

Equation (7.172) gives
1=— |E u(s)|. (7.175)

From eqns (7.174) and (7.175) it follows that

s E- u(s)
W) =T uo)

This is equivalent to the transformation given in Fig. 7.11.

(7.176)

7.7.2 Independent alignment approximation

According to eqn (7.172) s and § are not equal to each other. This leads
to a constitutive equation of a rather complicated form (see Section 7.9).
If we disregard the difference between s and § and assume the following
transformation rule

E-u(s)

ﬂ(s) = 'I‘ET(S)l (7. 177)

the constitutive equation is obtained in a simple form. This prompts the
study of the approximation (7.177), which we call the independent
alignment approximation (IA approximation).'*'* Though the physical
justification of this approximation is not clear, its error usually turns out
to be small except for a few cases which will be discussed later. Therefore
we shall first proceed using this approximation.

According to eqn (7.100) the stress for the inextensible model is given
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by
¢3kyTL21 [
Oap(t =N_Wz I dS(“a(s: ‘)uﬂ(s:‘)”é‘saﬂ
-L2
1 7
=G.T | ds U (s, Dug(s, £) = 30ap)
-L/2
1 7
=Gep | dsSup(s, 0). (7.178)
)

To calculate S,z(s, f) we need to obtain the probability distribution
function f(u, s, f) that the tangent vector at the segment s is in the
lirection u at time ¢. The time evolution equation for f(u, s, t) is obtained
n the same way as in Section 6.3,

Suppose that in the time interval between ¢ and ¢+ At, the chain
egment s moves to the position at which the chain segment s + A& was
ocated at time ¢, then u(s, f + At) is given by

E(t+ At 1) u(s+ A& 1)

u(s, t+ Ar)= |E(t + At, 1) - u(s + A, 1)’

(7.179)

since the distribution function of u(s + A&, t) and A§ are given by
“(u, s + A&, 1) and W(AE), respectively (see eqn (6.24)), the distribution
unction of u(s, t + At) is given by

E(t+ At 1) u' )
|E(t + At, ) - u’|
X f(u', s + AE, £). (7.180)

F(u, s, t + Af) = f JAEW(AE) f du'6(u -

To assess the accuracy of the IA approximation, let us consider the
stepwise deformation E imposed at ¢ =0. In this case the orientational
distribution before the deformation is

f(u, s, —0) = :,1,‘, (7.181)

Since W(AE) becomes 8(AE) for an infinitesimally small time-interval At,
eqn (7.180) gives

f(u, s, +0) = f %G(u —Ii—:—l) (7.182)
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Hence S,5(s, +0) is given by

Sap(s, +0) = f du(uqug —36.5)f (u, s, +0)

du’ E-u
- [ an) 5 (et =30um10(w - )
_[du(Ewu(E )y,
4n  |E-uf? P
=<(E'u)a(s'u)ﬁ_16 >
|E « uf® P 0
= QU(E). (7.183)
On the other hand the correct value of S,5(s, +0) is Q,5(E) given by eqn

(7.115). Thus in the case of stepwise deformation, the IA approximation
amounts to a decoupling approximation

<(E U)o (E - u),,> 1 - <(E “u)o(E - u),,)
[E-ul  /o(|E-ul)o [E-ul* /o
It can be seen that the error of this approximation will not be large for

any form of E. Indeed for the case of shear deformation, the IA
approximation gives

(7.184)

oSV =3y (¥« (7.185)
Q5M(y) — QEV(y) = —Fr(y «<1). (7.186)

The damping function is thus given by
KN = 080 /(£). (7.187)

This is shown by the dashed line in Fig. 7.16. It is seen that the error of
the IA approximation is small over a wide range of y. A useful formula
for QU4)(E) for general E is given in ref. 87.

7.7.3 Constitutive equation

To obtain f(u, s, t) in the general case, we rewrite eqn (7.180) in a
differential form. For small At, E(¢ + At, t) is written as I+ K(t)At.
Hence

E(t+At,t) u _ u+K(t) ult
|E(t + At, t) - u|  |u + K() - uAi|
=u+ (K@) u— (uu:k())u)At=u+ AtT(u, t) (7.188)

T(u, t) = K(t) * u — (uu: x(t))u. (7.189)

where
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Thus if we neglect the terms of order (Af)?, eqn (7.180) is rewritten as

f(u,s, t+ At)= IdAE‘I’(AE)Idu'é(u —u' — AtT(u', £))f(u', s + A, 1)
- f dAE\P(AE)(l - Ata% I(a, t))f(u, s+AE, 1)
_ f dAglll(Ag)(l + AEa—i +1(a8? )(1 At— I(u, t))f(u, 5, 1)

(1 + AID, aaz )(1 - Ata T(u, t))f(u, s, 1). (7.190)

Comparing the terms of order At, we have

—f(u, s, t)=D, 2)‘"(u, s, 1) —— l"(u, Of(u, s, t). (7.191)

The boundary condition is that the tangent vector at the chain end is
isotropic,

1
f(u, s, )= o at s=+L/2. (7.192)

Equation (7. 191) can be rigorously solved to give's

f(u,s, 1) = f ( (s, t :')) %é(u— l:g ;;:I) (7.193)

where (s, ¢) is given by eqn (6.14). This solution could also have been
arrived at by physical argument. Suppose that a tube segment is created
in the direction 4’ at either of the chain ends between time ¢’ and ¢' + dt’.
If this still survives at time ¢ and is now occupied by the primitive chain
segment s, u(s, t) must be E(t,t')-u'/|E(t, t') - u’| (this is the result of
the IA approximation). Since the probability that this happens is
Ec?lw(s, t—1t')/3t'|dt’ and the distribution of u’ is 1/47, we get eqn

.193).

From eqn (7.193), the orientation of the primitive chain segment is

given by

_ _E@ )
X (uqup §5wﬂ)6(" |E(t, t') - u'l)

= j dt'(% Y(s, t — t'))Q“A)(E(t t')). (7.194)
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Substituting this into eqn (7.178), we finally have

0up()=G. [ ar( v -1)) QWP EG ) (1199)

where (?) is given by eqn (7.40). Equation (7.195) is the constitutive
equation which comes out of the IA approximation. We shall now
compare this equation with experimental results.

7.7.4 Comparison with experiments

General feature. Equation (7.195) can be written in a more convenient
form. Consider that a stepwise strain E is applied at time 0, then E(z, ')
is given by
E ifr>0andt' <0
E@t ¢t ={ . ’ 7.
@) I  otherwise. (7.196)
Let ¢,p(t, E) be the stress caused by this deformation at a positive time ¢,
Equations (7.195) and (7.196) give

bunlt, E) = G,} ar (o e~ 1)) O(E)

= G y(t) Q53 (E). (7.197)

This is very similar to eqn (7.122) except that Q,5(E) is now replaced by
QU(E). In fact eqn (7.197) can be derived much more simply by the
reasoning given in Section 7.5.3, if it is noted that S,5(s, +0) is given by
QUsY(E) in the independent alignment approximation.

Using ¢,5(¢, E), the stress for an arbitrary flow history is given by

Gup(t) = f dt'(% ot —1', E)) . (7.198)
I E=E1,1)

Equation (7.198) agrees with the empirical equation proposed by
Bernstein, Kearseley, and Zapas (BKZ),* who found that the stress
response for various flow histories can be predicted by eqn (7.198) using
the stress relaxation function ¢.4(7, E) determined experimentally.
Subsequent experiments done by many authors®®® revealed that the
BKZ equation is one of the most successful empirical constitutive
equations.

As was shown in Section 7.5, the empirical stress relaxation function
@.5(t, E) is in good agreement with the reptation theory for linear
polymers of narrow molecular weight distribution. This, together with the
success of the BKZ equation, indicates that the constitutive equation
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derived by the reptation theory works well for general flow histories.
Indeed eqn (7.198) reproduces many characteristic features of the
nonlinear viscoelasticity. Leaving detailed comparison to refs 51 and
94-97, we shall study the main features briefly.

Nonlinear viscoelastic behaviour. To see the characteristic features of the
constitutive equation (7.195), we approximate y(t) by

(1 for t<my,,
v= {0 for t>1, (7.199)
Then eqn (7.195) gives
aaﬁ = GeQ%)(E(" t— td)) (7'2m)

which simply says that the stress is given by the elastic deformation
caused between ¢ — 7, and ¢.

(i) Steady shear flow. In the steady shear flow, eqn (7.200) gives the
shear stress

Oxy(K) & Gng,A)(KTd) . G,K‘rdh(m)(x‘rd). (7.201)
Thus the viscosity becomes
n(x) = n(0)r"(kz,). (7.202)

Equation (7.202) indicates the shear thinning occurs at x =1/7,, which
becomes very small for large molecules. This explains why the nonlinear
response is important in polymeric liquids.

The first normal stress coefficient is also estimated as

W, (k) = G,t3h ™ (x7,) (7.203)

which again decreases with the shear rate as shown in Fig. 7.18. The
second normal stress coefficient

\ W,(x) = —G,13h§"™M(K1,),
where

BN (y) = —-2% QM (y) - QIN()), (7.204)

is negative and again decreases with k, in agreement with experiments.
The ratio W,(0)/¥,(0) is precisely evaluated as™t

¥2(0) _ 05N () — 08N (y)
| ¥i(0) QLM () - 2HM(Y) ly=o
The experimental value is between —0.1 and —0.3.%%

t1f the IA approximation is not used, the precise value of W,(0)/¥,(0) becomes
-1/7=-0.14.

= —3=-03. (7.205)
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(ii) Stress growth in shear flow. When a shear flow is started with
constant shear rate kx at time ¢ =0, eqn (7.200) gives

1
n"(t; x) =~ (1, t = T)h V(v (e, t - 14)). (7.206)
Since
kKt for <ty
tt— = 7.20
i Ta) {xr,, for t> 1, ( 7)
therefore
Gth™(kt)  for t<t,
*tx)={ ° .20
n" (%) {G,t.,h“‘“’(xtd) for t>1,. (7.208)

Since yh(y) has a maximum at y=2, n*(f; x) shows a maximum at
t=2/k provided k7, =2. The height of the maximum decreases as 1/k.
These features are in agreement with the experimental results shown in
Fig. 7.19.

(iii) Steady elongational flow. The steady elongational viscosity is given
as

16(6) = 55 (O (ér,) - QU (Ev.) (7.209)

which first increases slightly with £ and then decreases with . This was in
contradiction with earlier data® for low density polyethylene, which
indicated a sharp rise of nz(€), but recent data for monodisperse linear

polymers®"'® are consistent with the theory.

7.7.5 Discussion

Though the theoretical constitutive equation (7.195) explains many
features of nonlinear viscoelasticity, there are some discrepancies which
are worth discussing.

Steady shear flow. The predicted steady state viscosity 7(k) depends on
the shear rate x too strongly. In fact eqn (7.195) predicts that at high
shear rate of k7, > 1%

n(x) = n(0)(x7s) ™" (7.210)

i.e., the shear stress o,,(kx) = n(x)x decreases with increasing shear rate,
which means that the shear flow is not stable at high shear rate. At first
sight this conclusion may seem to contradict the many experiments which
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show stable shear flow up to very high shear rate. However, the
theoretical prediction is not entirely ruled out for various reasons:

(i) Equation (7.195) indicates that the form of n(x) is sensitive to the
relaxation spectra of the linear relaxation modulus G(¢): the broader the
relaxation spectra is, the smaller the exponent x in 7(x) < x™* becomes.
If the sample has broader molecular weight distribution, the relaxation
spectra of G(¢f) becomes broad and the anomalous behaviour of n(x)
disappears. Also, even for the monodisperse sample, the various relaxa-
tion processes discussed in Section 7.4.2 broaden the relaxation spectra
and weaken the shear rate dependence of n(x).

(ii) Equation (7.210) is derived under the condition
/1, <k K 1/tg. (7.211)

If xtz becomes of the order of unity, the contour length L(x) increases
with the shear rate, and the stress starts to increase according to

0, x L(x)? (7.212)

(see eqn (7.100)). Therefore if t,/tx =M/M, is not sufficiently large,
which is the case in many experiments with monodisperse samples, the
minimum of o,,(x) will not be observed and the flow will be stable.

(iii) On the other hand if the system is monodisperse and if M/M, is
large enough, the theory predicts the shear stress shown in Fig. 7.22.
Such behaviour has indeed been proposed by Vinogradov'® and by Ball
and McLeish,” to interpret the finding that the flow rate of polymers
through pipes changes abruptly as the shear rate is raised if the molecular
weight of the polymer is high and has a narrow distribution. Though the

log oy, (k) A

Ko =1/14

t

xe'=1/ta

-
log x

Fig. 7.22. Shear stress predicted by the theory for monodisperse systems with
M/M, large.
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detailed analysis has not been done, it should be worthwhile to study the
phenomenon under well-controlled conditions.

Stress overshoot. According to eqn (7.195), the stress maximum at the
start of the shear flow appears in the shear stress, but not in the first
normal stress difference N;(t, k) = 0,.(t; k) — 0,,(¢; x),** whilst experi-
mentally the maximum is often observed in N;(¢; x). This is possibly
due to the elongation of the contour length. Indeed the overshoot in the
normal stress appears at a higher shear rate than in the shear stress.!"'®

That the elongation of the contour length is important under usual flow
conditions is indicated by the stress relaxation after the steady shear flow.
It has been observed'® that when the shear rate becomes larger than
1/7g, the relaxation curves begin to show a short-time component which
corresponds to the relaxation in the contour length.

7.8 Stress relaxation after double step strain

Though the BKZ-type constitutive equation has been quite successful in
many phenomena, it has been reported that under certain flow history,
the equation gives unsatisfactory predictions. One such experiment is the
stress relaxation after application of double step strain.'®'% The flow
history of this experiment is illustrated in Fig. 7.23.

Two step shears y, and y, are applied with time interval ¢,, one at time
—t, and the other at time 0. The BKZ equation (7.198) predicts

Oup(t) = Pap(t, V2) + Pap(t + 11, Y2+ ¥1) — Pap(t +11, v2). (7.213)

nt) nt)
Y2
T t T T — Y2
f Y1+ 72 1
7
| | 1 fren
s 0 t ~t 0 t
Oxft) Oxyt)
- ﬁ 0 t -1 0 / ?

(a) (b)

Fig. 7.23. Double step strain experiments.
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According to Osaki et al.,'® eqn (7.213) predicts the stress with
reasonable accuracy when y,y, >0, i.e, when the sense of the two shears
are the same, while when y,y,<0, a large discrepancy is found. It has
been shown'?”’ that this discrepancy is caused by the IA approximation
and the rigorous analysis of the model gives good agreement with
experiments.

We consider the inextensible chain model. Figure 7.24 explains the
change of polymer conformation under the double step strain. Figure
7.24a shows the undeformed state just before the first deformation.
Figure 7.24b represents the state immediately after the deformation: the
primitive chain is deformed by the shear y,. Figure 7.24c indicates the
state just before the second deformation; the inner part AB still remains
in the deformed tube, while the outer parts are in the undeformed tube.
Now when the second deformation is applied, the inner part AB is
deformed by the shear y, + y, from the equilibrium state, while the outer
part is deformed by the shear y,. It is important to note that the second
shear stretches the contour length of the outer part by the factor a(y,),
but that of the inner part by the factor

B = a(y, + v2)/ a(y1), (7.214)

since the inner part is already stretched by the factor a(y,). If the
coordinates of A and B are s, and s,, respectively, the coordinates of A’
and B’ are Bs, and fs,. Hence the probability that a primitive chain
segment s is between A’B’ is equal to the probability that it is between

time

(a) -t -0

O 0777

A B
@ -0 T
A B

(d) +0&

o &2 N B+

Fig. 7.24. Microscopic process in the relaxation of double step strain. The
deformation of the primitive chain at various times are shown. The deformation
of the primitive chain relative to the equilibrium state is shown by oblique lines.
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AB at time t= -0, and is given by ¥(s/B, t;). Hence the average of
Sap(s, +0) is given byt

Y(s/B, 1) Qap(y1 + 72) + [1— 9(s/B, 1)]Qups(y2)

IB| < L/2,
Sap(s, +0) = I 7.215
8l ) Q.ap(2), |s/B| > L/2. ( )
For t >0, Su(s, t) satisﬁes
] &
gt ,,p(s, t) = chz‘sap(s, t) (7.216)
and the boundary condition
Sap(s, £)=0 at s= :t£2‘-. (7.217)
Hence S,4(s, t) is given by
L2
Sap(s, t) = f ds'G(s, s', )Sap(s’, +0) (7.218)
-1n
where
B O ) S
G(s, s ,t)—Lpglsm(L .<;+2 sin{ 7~ s + ) exp(—p°t/t,).
(7.219)

From eqns (7.178), (7.218), and (7.219), the stress at time #(t>0) is
given by
L2 L2

aa,,(t)=c:,% j ds’ f dsG(s, s', 1)Sap(s’, +0)
-~L12 -Li2
1 LR
=G f ds"y(s", £)Sup(s”, +0). (7.220)
-LR2

Substituting eqn (7.215) we have

Uafﬂ(t) = GeQap(Y2)tp(t) + Ge[Qaﬂ(Yl + 72) - QaB(YZ)]w’(tr tl: B)
(7.221)

f Here it is assumed that if |s/B| is larger than L/2, the primitive chain segment s is
deformed by y,. Strictly speaking this is only approximately correct. Actually there is a
small correction term to eqn (7.215),'” which is neglected here because it is numerically
insignificant.
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where
r P2
L fdsw(s, Hy(s/p, ty) for B<1,
yup)={ ', (1.222)
{% fdsw(s,t)w(s/ﬂ, t,) for B>1
-Ln

Using eqn (6.14) and doing the integral, we get

(32 _\@+a-2y2 Sin[(/2)(q — pB)]
n® ﬂp.go«( e p(@*-p*F?
-(? 2 1)/ ta f 1,
V't 1, B)=4 X Rl g )./t | for p< (7.223)
2 2 (_)(p+q_2yzS|n[(n/2)(p—q/ﬁ)]
n’ P,q:0dd q(p*—-q*/1B%
L xexp[-(p*t + q¢*)/ts] for B>1.

To simplify the equation we consider the case of large ¢t and ¢,. If t> 1,
and t, > 7,4, only the first term in the sum of eqn (7.223) is important and
Y'(t, t;, B) is approximated by

,
: %25 B c:sf:;p;n) exp[—(t +1t)/74] for B<1
V't h, B)= (7.224)
\ %@%ﬁ)exp[—@ +t)/t;] for B>1
or it may be written as
V'@, 1, B)=AB)y(t +1) (7.225)
where
Apeab) o gy
AQB)= (7.226)
%—“;i_’%f) for B>1.

Although eqn (7.225) is obtained under the condition ¢ > 7, and ¢, > 7,, it
turns out that eqn (7.225) is actually a good approximation for the entire
regime of ¢ and £,.'” If eqn (7.225) is used, eqn (7.221) is written as

Oup(t) = Pop(t, v2) + A(B)[Pap(t + t1, Y1+ ¥2) — Pap(t + 1, v2)].  (7.227)

Equation (7.227) has been thoroughly checked by Osaki et al.%'% An
example is given in Fig. 7.25. This indicates that the theory described in
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— \
-11.6'11.6 \
| \

-t 0—>t \\
1 | . (o] ey
0 l L\
10' 10°
t(sec)

Fig. 7.25. Shear stresses for double step shear deformation. —y, =y, =11.6, and
t, is indicated in the figure. Sample polystyrene solution in diethyl phthalate
M =3.10x 10° and p =0.221 gcm™>. The heavy lines represent stress for single
step deformation. The light solid line represents eqn (7.227) and the light broken
lines the result of the BKZ equation (eqn (7.213)). Reproduced from ref. 68.

Section 7.7 correctly reflects the reality of polymer dynamics in an
entangled state.

7.9 Rigorous constitutive equation for reptation model

Having seen that the IA approximation causes a serious error in certain
situations, we now derive a constitutive equation without using the IA
approximation,'%®
In a small time-interval At, E(t + At, t) is given by
E(t+ At t)=1+ x(t)At. (7.228)
Thus the transformation rule described by eqn (7.171) is written as
RS, t+At)=R(s, 1) + x(t) - R(s, t)At = R(s, t) + x(2) - R(S, t)At.
(7.229)
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The second equality holds since s — § is of order At. Similarly eqn (7.172)
becomes

§= Ids' lu(s’, 1) + x(t) - u(s’, t)At|
= Ids'(l + K(t):u(s', Hu(s’, 1)At) + O(AP)

— s+ A f ds’ k(1) :u(s’, )u(s’, 1). (7.230)
0
Therefore, to the order of At¢, s is expressed by § as

s=§— AtIds'x(t):u(s', tu(s’, t)
0

=5§— AtE(§, 1) (7.231)
where
E(s, t) = ] ds'x(t):u(s', u(s’, t). (7.232)

From eqns (7.229) and (7.230), the change in the tangent vector u(s, f)
becomes

u(s, t+ At)= %R(&, t+ At) =8%(R(s, t) + x(t) - R(5, t)At)

os o o
=—— , 1)+ K(t) - —R(S, t)At
as’asR(s t) + x(t) % (9

_ (1 _ Ata% EGs, t))u(s, £+ K() - uG, DAL (7.233)

Using eqn (7.232),
u(S, t+ At) =u(s, t) — [&(2) :u(S, Hu(s, Hu(s, t) — k(1) - u(S, t))At
=u(s, ) — [K(t):u(S, Hu(s, Hu(s, t) — k() - u(5, ))At + O(AFP)
=u(s, t) +L(u(s, t), t)At (7.234)
where I'(u, ¢) is given by eqn (7.189)

In eqn (7.234) the effect of Brownian motion was not taken into
account. If this is included, the final equation becomes

u(S, t+ A)=u(s + AL, 1) +T(u(s, 1), t)At
=u(5— &G, )AL+ AE, 1) + T(u(5, t), DAL, (7.235)
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or replacing § by s
u(s, t + At) = u(s — E(s, O)At + AE, t) + L(u(s, 1), )At.  (7.236)

This is the time-evolution equation for the tangent vector u(s, #) of the
inextensible primitive chain. Thus the equation for f(u, s, t) is

f(u, s, t+ At)= (O[u—u(s, ¢t + Ar)])
= (8[u — u(s — &(s, 1) At + AE(t), ) — T(u(s, t), )At])
= (8[u —u(s — &(s, At + AE(0), D)])

—At%  (T(w, Df s, 5, 1)). (7.237)
The first term is written
= (6[u — u(s — &(s, )At + AE(t), 1)])

<[1+A'g‘ S +AT§2§—A 1€ ]G[u—u(s, t)]>

= (14D Jftw 5,0 80 (62 slu—uGs, ). (.238)

The underlined term is rewritten as

Y= <;=a% 8[u - us, r)]) =a% (&8[u — u(s, D)) — <6[u —u(s, 1)] Z—f).
(7.239)

Since the correlation between u(s, t) and u(s’, ) decreases quickly with
an increase in [s — 5’|, the first average in eqn (7.239) becomes

(56[u—u(s, t)]) = Ids'x(t): (u(s', hu(s’, t)0[u — u(s, t)])
~ j ds'x(t): (u(s’, Yu(s’, 1)) ([u — u(s, 1)])

= fds'x(t): {u(s’, Hu(s’, ))f(u, s, t). (7.240)
From eqn (7.232) it follows that

—==x(¢):u(s, tu(s, ¢). (7.241)
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From eqns (7.239)-(7.241), one has
Y=a% u;ds'x(t) {u(s’, Huls’, 1)) f(u, s, t)]
— (x(t):u(s, Hu(s, 1)6[u — u(s, 1)])
= x(0): s, s, )5, 1)+ (ECs, 1) 5w, 5, 0

—«&(t): unf(u, s, t). (7.242)
Hence the time evolution equation for f(m, s, ¢) is obtained ast
3? .
Dz (B 1) 2 )5, ) = o - (CC, 1), 5, )
+ K(2): (um — (u(s, Huls, )))f(w, s, t). (7.243)
The average in eqn (7.243) can be expressed by f(u, s, t) as
(E(s, 1)) = f ds’Idux(t):uuf(u, s', t) (7.244)
and i
(ua(s, Dug(s, 1)) =Iduu,upf(u, s, t). (7.245)

Hence eqn (7.243) is a nonlinear integro-differential equation for
f(u, s, t).

Equation (7.243) can be rewritten into more tractable form. By a
similar technique described in ref. 108, eqn (7.243) can be transformed
into a closed equation for S,4(s, #):

4
d

Sap(s, 1) = f dt'(; K(s, t, t')) Q.p(E(t, t')) (7.246)

where K(s, ¢, t') is the solution of the differential equation

o & . 3 ,
(5—005;5+ {&E(s, r))a)l((s, t,t')=0 (7.247)
with the initial condition

K(s,t,t')=1 at t=t¢ (7.248)

+In ref. 108 the terms in the last parenthesis are erroneously omitted. This gives a
constitutive equation which includes Q"A)(E) instead of Q(E) in eqn (7.246). Since the
difference in Q@~)(E) and Q(E) is small, the error caused by this is not serious.
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and the boundary condition
K(s,t,t')=0 at s=-L/2 and s=LJ/2 (7.249)
Finally (&(s, 1)) is given by

(£, D) = [ d5'Kup (Sp(s", 1) (7.250

Equations (7.246)—(7.250) determine S,5(s, ¢). Given S,4(s, t), the stress
can be calculated by eqn (7.178).1

In the special case of step strain, one can solve the set of equations
(7.246)—(7.250) rigorously and obtain the results given in eqn (7.122). In
the general case, the solution of the equation needs numerical calcula-
tion. It turns out that the difference between eqns (7.194) and (7.246) is
not large for the usual flow history discussed in Section 7.6. For such
flows, the simple constitutive equation will be useful.

The effect of the IA approximation has also been examined for large
amplitude oscillatory shear deformation.!® In this case the result of the
constitutive equation without using the IA approximation is shown to be
in better agreement with experimental results.!'°

It has been shown by Marrucci’® and Marrucci and Grizzuti''® that
analysis at the level of accuracy of this section is required to derive
Weissenberg effect correctly.

7.10 Further applications

Here we shall briefly discuss some pending problems which have not been
discussed in the previous sections.

7.10.1 Branched polymers

As discussed in Section 6.4.5, reptation is severely suppressed if the
polymer has long branches. Indeed it has been observed that the
dynamical properties of branched polymers are quite distinct from those
of linear polymers. So far studies have been done for branched polymers
of the simplest type, the star-shaped polymer in which f chains are
connected to a centre. The observed phenomena are:

(i) The diffusion constant Dy of a star polymer in a high molecular
weight matrix is much smaller than that of a linear polymer of the same
molecular weight,'"’ and the molecular weight dependence of D is much
stronger than that of linear pol;mers. This is consistent with the
prediction of the reptation theory''* (eqn (6.118)).

t The same constitutive equation has recently been derived by G. Marrucci (J. Non-
Newtonian Fluid Mech, to appear) by a different method.
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Fig. 7.26. Relaxation of a star polymer. Figures show the states (a) before the

deformation, (b) immediately after the deformation, (c¢) at a later time . The

deformed part of the tube which contributes to the stress is denoted by oblique
hines.

plateau region and the steady-state compliance J& is Rouse like (i.e.,
proportional to M) even if the molecular weight becomes quite high.*¢

The anomalous behaviour in the linear viscoelasticity has been ex-
plained by the tube model.''*'%!36 Figure 7.26 shows schematically how
the stress relaxation takes place in star polymers. In the crude theory,'*’
it is assumed that the centre of the star is fixed during the viscoelastic
relaxation time and that the relaxation takes place only by the contour
length fluctuation, i.e., by the process that the polymer retracts its arm
down the tube and evacuates from the deformed tube as shown in Fig.
7.26.

Let (s, f) be the probability that the tube segment s which is
separated from the centre by the contour length s still remains at time ¢,
then the relaxation modulus is written as

L
G(t) = G&?’Z.l; [ dsy(s, ¢) (7.251)

where L, is the equilibrium length of the tube for the arm of the star
polymer, and the constant G{P can be identified, in a first approximation,
with the plateau modulus for linear polymers:

o _ PRT
G M (7.252)
A simple approximation for (s, ¢) is
Y(s, t) = exp(—t/t(s)) (7.253)

where t(s) is the average time at which the chain end first reaches the
tube segment s, i.e., the contour length L,(¢) first becomes equal to s. As
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was discussed in Section 6.4.5, the motion of L,(¢) can be regarded as a
Brownian motion of a particle in a harmonic potential

3ksT
21’\131')2 (Lo

where N, is the number of Rouse segments in the arm. Hence the time
7(s) is estimated as

U(L,) = - L) (7.254)

(L—‘a - )2
D,

The maximum relaxation time is given by
5ol ) = e[ () |
e = 706 = 0) = exp( 55705 2) =22 exp| 3N | 7.256)
Equation (7.255) is then written as

£(5) = Tams(1 ~ £ ep(3,(2) (8~ 28)) (7.257)

7(s) = exp((U(L, = 5) — U(L)VksT). (7.255)

where
E=s/L,. (7.258)

Consider the case
b 2
aE%N,(Z) 1, (7.259)

then the viscosity is evaluated as

- L. 1
No= !dtG(t) = Gf\(})z-l; !ds:(s) = G}f,’)rm‘!:dg(l — E)? exp(—2a& + a&?)

T 1
= GO7 0 I d& exp(—2a&) = 30 GSO% - (7.260)
0
Similarly, the steady-state compliance is obtained as

J(°>——-jdzc(z)t (7.261)

Go

Since the molecular weight of an arm is M/f, it follows from eqns (7.54)
and (7.259)

15M
8fM.

a=

(7.262)
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Thus eqns (7.260) and (7.261) are written as

M\? 15M
No ( 7 c) exp( 3 fMe) (7.263)
and
15M
0) -
JO = 8oRT" (7.264)

The results of eqns (7.263) and (7.264) are in qualitative agreement with
experimental results: the viscosity increases steeply because of the
exponential factor, and the steady state compliance is proportional to M.
However, the quantitative agreement is not satisfactory. The observed
viscosity is smaller than the calculated one, and the best fit with
experiments is obtained only when the numerical coefficient in the
exponential of eqn (7.263) is replaced by a smaller number (about 1/2)
instead of 15/8.!%® This suggests that relaxation mechanisms other than
the contour length fluctuations are important for star polymers. Indeed it
has been pointed out®?’ that in the case of star polymers the constraint
release, and perhaps other tube reorganization processes, are as impor-
tant as the contour length fluctuation.

That the tube reorganization is important for star polymers is indicated
by another experiment. Kan e a/.'" found that the relaxation time of a
star polymer dispersed in a crosslinked system is by orders of magnitude
larger than that in the melt, while for linear polymers the former is larger
only by a factor of 2 or 3.

The constraint release or other mechanisms of the tube reorganization
are supposed to be important in other branched polymers such as
H-shaped polymers''® or ring polymers.!" Theoretical prediction for the
rtheological properties of these polymers is interesting and challenging.

7.10.2 Molecular weight distribution

Various experimental data suggest that the tube reorganization is im-
portant in linear polymers with molecular weight distribution.

(i) The diffusion constant of a polymer (of molecular weight M) in a
matrix (of molecular weight P) has been found to be essentially
independent of P if P is larger than a certain value P, which is between M
and M,.*" This indicates that the tube reorganization is weak in
monodisperse systems (M = P). On the other hand, if P becomes smaller
than P,, the diffusion constant increases with decreasing P.'?*'%!

(ii) The linear viscoelasticity of a mixture of two polymers of the same
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log G™ (t) §

Gy —=

Fig. 7.27. Discrepancy between experimental results and eqn (7.265).

species, but different molecular weights M, and My (M, > Mjp) is not
explained by the model which includes only reptation. According to the
fixed tube model, the relaxation modulus of the mixture is the weight
average of that of the pure melts of individual components:*

G™ (1) = wy Ga(t) + wy Gp(f) (7.265)
where
Pa Ps
Wy =—"——, wg = . 7.266
A PatPp 7 PatPB ( )

The discrepancy between the experimental results'® and eqn (7.265) is
schematically explained in Fig. 7.27: G™(¢) shows two characteristic
relaxations, each corresponding to the disengagement of polymer A and
B. Though this feature is in agreement with eqn (7.265), the relaxation
time of the larger component 7,4 is shorter than that in the pure A
component t$}, and the plateau modulus for the larger polymer is lower
than expected from eqn (7.265). Kurata'? suggested that the experimen-
tal data can be fitted by

G () = (1 — w2)G(t) + WaGal(t/wy). (7.267)

These results clearly indicate that the tube constraint for a polymer
becomes weaker if it is made of shorter polymers. The weakening of the
tube can be expressed either by an increase in the step length,>'% or by
an increase in the constraint release process,””’* or both.’*"'> However,
the interpretation seems to be still at a tentative level.

7.10.3 Future problems

The reptation model has been applied to various problems other than the
problems of viscoelasticity and diffusion that have been discussed. These
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include dielectric relaxation,'? spinodal decomposition,'*?° polymer—

polymer welding,'*>! diffusion controlled reaction,’*>'** and
crazing.>*'¥ A concise review of various applications is given by de
Gennes and Léger.'*

On the whole the reptation model works well qualitatively, and for
several problems it gives quantitatively successful predictions. However,
many problems remain unsolved.

Perhaps the most important problem is the tube reorganization. We
have seen that the tube reorganization is important in branched polymers
and in linear polymers with polydispersity. It will also be important in a
nonuniform system such as polymer mixtures. So far the reptation theory
is based on the assumption that there is a tube which is characterized by a
single parameter &, the step length of the tube. Though the outcome of
this simple assumption is quite fruitful, one could ask: to what extent is
this picture correct?

A complete answer to this question will be given when the tube is
derived from more basic equations such as eqn (5.84) by a kind of mean
field approximation. This will require a new development of statistical
mechanics since the tube is a dynamical concept rather than static.
(Notice that the mean force acting on the polymer vanishes if it is
averaged over a time longer than 7, so that the average of the
surrounding field must be taken over a finite time.) Perhaps the tube is
better understood as representing the effect of dynamical correlation of
the environment rather than the usual mean field.

A slightly different, but closely related, problem is rubber elasticity.
Here the dynamical problem does not arise since the topological
constraints are permanent. However, the correlation plays an essential
role in the problem. Indeed it is the correlation in the topological
structure between the undeformed state and the deformed state that gives
rise to the rubber elasticity. In the modern theory of rubber elasticity,
this correlation is neatly handled by the replica method.””'*® Generali-
zation of this method to dynamical problems might be quite useful.

On the other hand, apart from that purely theoretical approach, it will
be quite promising to develop a theory by closely studying experimental
results. Collaboration between experiment and theory will be essential
for further progress.
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8

DILUTE SOLUTIONS OF RIGID
RODLIKE POLYMERS

8.1 Rodlike polymers

Though many polymers are flexible and take a random coil structure,
there is a large class of polymers which are not flexible and assume a
rodlike structure. For example, some polypeptides or polynucleotides
form a helix structure which can be regarded effectively as a rigid rod. If
the chemical bonds in the backbone chain consist of double bonds or
phenylene rings, the internal rotation of the polymer is severely restricted
and the polymer takes an elongated form. These latter type of rodlike
polymers are quite important in polymer technology because of their
capability of creating very strong fibres, and an increasing amount of
research is being done as a result.

The physical properties of the rodlike polymers differ from those of
flexible polymers in many respects.

Firstly, an obvious distinction is that rodlike polymers are much larger
than flexible polymers with the same molecular weight. If the polymer is
a straight rod, its radius of gyration R, is proportional to the contour
length of the polymer, or the molecular weight M, as compared to the
relation R, x M" (v =0.6) for flexible polymers. The elongated form of
the polymer is reflected in various dilute solution properties such as the
larger intrinsic viscosity, larger relaxation time, or smaller diffusion
constant as compared to those of flexible polymers.'

Secondly, due to the large molecular anisotropy, rodlike polymers are
much more easily oriented by an external field and show large birefrin-
gence. This enables us to use electric or magnetic birefringence as a
practical tool to study the rotational motion of these polymers.?

Thirdly, the distinction between rodlike polymers and flexible polymers
becomes more pronounced as concentration increases. Due to their
larger size, the interaction of the rodlike polymers becomes important at
a much lower concentration than with flexible polymers, and, as we shall
show later, the effect of the entanglement is much more remarkable.

Fourthly, but not least, when the concentration becomes sufficiently
high, rodlike polymers spontaneously orient towards some direction, and
form a liquid crystalline phase.® It is this capability of forming a highly
ordered phase that produces strong fibres.

In this and the following two chapters, we shall discuss the physical
properties of such polymers. Although real polymers have finite rigidity
and can bend to some extent, we shall mainly consider the extreme
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situation, i.e. rigid rodlike polymers. The effect of the flexibility will be
discussed only briefly.

Theoretical treatment of rodlike polymers is much easier than for
flexible polymers since rodlike polymers can have only two kinds of
motion, i.e., translation and rotation. Once the basic equation is set up,
mathematical analysis is easy. However, important physics is included in
an essential way in the problems of rodlike polymers. In particular, the
importance of the orientational degrees of freedom and the peculiar
nature of the topological constraints will be seen clearly in this system.

In this chapter we shall discuss the properties of dilute solutions. The
properties at higher concentrations will be discussed in later chapters.

8.2 Rotational diffusion

8.2.1 Rotational Brownian motion

Rodlike polymers do two kinds of Brownian motion, translation and
rotation. The translational Brownian motion is the random motion of the
position vector R of the centre of mass, and the rotational Brownian
motion is the random motion of the unit vector # which is parallel to the
polymer.

To visualize the rotational Brownian motion we imagine the trajectory
of u(¢), which is on the surface of the sphere |u|=1 (see Fig. 8.1). For
short times, the random motion of u(¢#) can be regarded as Brownian
motion on a two-dimensional flat surface, and the mean square displace-

z

}

/ u(t)

/

/

v ()

Y

Fig. 8.1. Rotational diffusion.
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ment of u(¢) in time ¢ is written as
{(u(?) — u(0))*) =4D,t (for D,t < 1). (8.1)

The coefficient D, is called the rotational diffusion constant. Note that the
dimension of D, is (time)™", and is not the same as that of the
translational diffusion constant, which is (length)?/(time).

Equation (8.1) is correct only for D,z << 1. To discuss the general case,
we have to study the Smoluchowski equation for the rotational Brownian
motion. This equation can be derived straightforwardly according to the
Kirkwood theory* described in Section 3.8. Such a derivation is given in
Appendix 8.1. Here we derive it by an elementary method to clarify the
underlying physics.

8.2.2 Hpydrodynamics of rotational motion

As was discussed in Chapter 3, the first step in deriving the Smoluchow-
ski equation is to obtain the phenomenological relation between the force
and flux by using the hydrodynamics of the problem.

Consider a rod placed in a quiescent viscous fluid. If an external field
exerts a torque N on the rod, the rod will rotate with certain angular
velocity @. For thin rod, we may neglect the rotation around u, and
assume that both @ and N are perpendicular to . If N is small, © is
linear in N, and by symmetry, parallel to N.

0= 1 N. (8.2)
&
The coefficient , is called the rotational friction constant.

A simple estimation of {, is done for the ‘shish-kebab model’
illustrated in Fig. 8.2: the rod is regarded as made up of N = L/b ‘beads’,
which are numbered from —N/2 to N/2. When the rod rotates with
angular velocity o, the bead » which is separated from the centre by the
distance nb moves with velocity ¥}, = (o X nbu).

If the hydrodynamic interaction is neglected, the frictional force acting
on the segment n is —{,V,, where = 3mn,b is the translational friction
constant of the bead. Thus the total torque due to the hydrodynamic
friction is given by

N2

Nriction = — 2 nbu X &, V,

n=-—N/f2

= - g:z nbu X (o0 X nbu)

n=—=N/{2

N2 3 3
=-t X rbo=-@rnb)bs(3) 0= 0. o (83)

n=-—N/2 2 4
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A

L
\ N/2
b
%
<
AP
%
N

Fig. 8.2. Rodlike polymer and shish-kebab model, which consists of N=L/b
beads of diameter b placed along a straight line.

which must balance with the external torque N. Hence

an,L?
£ = _.__.'74 ) (8.4)
If the hydrodynamic interaction among the beads is taken into account,
g, is shown to be (see Appendix 8.1):

an,L?

& =3 in(L/25) (8.5)

More precise hydrodynamic calculation for the cylinder gives a correction
y to the denominator:¥

_ mnL?
&= 3(In(L/b)— )
t For a prolate elipsoid, an exact calculation can be done and the result is
2 n -1
6= 21— ) [ (228 D) -1
where 2a is the length of the long axis and p is the aspect ratio. For p >2, the above
equation is approximated as

(8.6)

5,6,7

16xn,a°

=R mep) - 1)

which agrees with eqn (8.6)
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The calculation based on the point force approximation® gives y =0.8,
while more recent calculation®'? indicates that y weakly depends on L/b.

The torque N is now expressed by the potential U(u) of the external
field. Consider a small rotation vy which changes u to u + 6y X u. The
work needed for this change is —N - 8y, which must be equal to the
change in U, i.e.,

—-— - = ¢ -?- = ' a_.
—N-6y=U(u+ 6y Xu)—U(u)=(6¢ X u) auU—(SlP (“xafc,)
Hence 8.7
Where.l' N = _QU (88)
_ ol
R=uX ™ 8.9)

The operator R, called the rotational operator, plays the role of the
gradient operator 3/3R in translational diffusion.

An important property of & is the formula of integration by parts, i.e.,
for the integral over the entire surface of the sphere of |u|=1,

f duA(u)RB(x) = — f du[RA(u)|B(u). (8.10)

(In quantum mechanics, —i%®R corresponds to the angular momentum
operator so that eqn (8.10) is equivalent to the Hermitian property of this
operator.)

Now if the fluid surrounding the rod is flowing with a certain velocity
gradient, there will be an additional angular velocity o, of the rod, which
again can be calculated by hydrodynamics.i For a slender rod, @, is
obtained by a simple geometrical reasoning explained in Fig. 8.3:

Wo=uXK-u (8.11)

TIn eqn (8.9) 3/3u, means the partial derivative in which u,, u,, u, are regarded as
independent variables. Since u is a unit vector, there are many ways to express U. For
example, consider the following three quantities

- ux
(W2+ul+ ud)\?

Fl=ux: Fz ’,3=(1_u3_u3)ll2.

All represent the same quantity for the unit vector w. It is easily checked that, though
OF,/du,, 3F,/3u, and 3F;/3u, are not equal to each other, RF,, RF,, and RF, are all
equal. Thus the derivative RF has no ambiguity.

$ For a spheroid of aspect ratio p = a/b, @, is given by>®

p? 1
=uX oy - +.
0y,=u (—2——1‘ u 7 l‘ u).

In the limit of p— =, this reduces to eqn (8.11).



294 DILUTE SOLUTIONS OF RIGID RODLIKE POLYMERS

Fig. 8.3. Geometrical meaning of eqn (8.11). If the rod follows the macroscopic
velocity gradient, its direction changes as & = K - u — (uu:X)u. Hence the angular
velocity o, is given by edo =u X @t = X (K - u).

Therefore the angular velocity of a rod immersed in a fluid with
velocity gradient x and subject to an external potential U(u) is given as

=—%9!U+u><x-u. (8.12)

This consequence of the hydrodynamics corresponds to eqn (3.118) for
translational motion.

82.3 Smoluchowski equation for rotational motion

Now it is easy to give an account of the Brownian motion. If W(u;?) is
the probability distribution function of #, the Brownian motion is
included by adding the ‘Brownian potential’ k3T In W to U. The angular
velocity @ is now given by

0= -la(kBTan+U)+uxx-u. (8.13)

r

For given w, u changes with the velocity ® X u, and the equation for the
conservation of the probability becomes

‘—9;= —-‘%-(mx uW) = -(uXEa;) 0¥ =-R-(0¥). (8.14)

From eqns (8.13) and (8.14), we have the Smoluchowski equation for
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rotational diffusion

%:’zlgg.[k,,mwumv]—a-(uxx-utp)

=D,92-[QW+%9!U:’—9!'(uXK-u‘I’) (8.15)
B

where D, is defined by

ksT _3ksT(In(L/b) - v)
g, an, L’ '

We shall later show that D, agrees with the rotational diffusion constant
defined by eqn (8.1).

Note the formal similarity between the rotational diffusion equation
and the usual translational diffusion equation: if the gradient operator
d/3R in the translational diffusion equation is replaced by the operator
R, the rotational diffusion equation is obtained.

The rotational Brownian motion can also be described by the Langevin
equation, but it is rarely used in the problem of rodlike polymers because
it is less convenient for calculation than the Smoluchowski equation.

D, =

(8.16)

8.3 Translational diffusion

8.3.1 Hpydrodynamics of translational motion

It is straightforward to include the translational motion into the Smol-
uchowski equation. Again the hydrodynamics is considered first. Suppose
the rod is moving with the velocity ¥ in a quiescent fluid (see Fig. 8.4). If
the rod moves along u, the rod will feel a hydrodynamic drag, which is
parallel to V and is written as {;¥V. On the other hand if V is
perpendicular to #, the drag is again parallel to ¥V and is written as & V.

S

F

@F=(,V ®) F=(,V (©F=(Vy+{.V,

Fig. 8.4. Anisotropy in the translation friction constant. (a) V]|u, (b) V L u, and
(c) general direction V = V| + V,.
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In general the coefficients £ and £, are not equal to each other. They
are called the parallel and perpendicular components of the translational
friction constant, respectively.

Given {) and £, the hydrodynamic drag for a translational motion in
a general direction is obtained as follows. Since the Stokes equation (eqn
(3.102)) is a linear equation, the hydrodynamic drag must be linear in V.
Thus if ¥ and V, are the parallel and the perpendicular components of
V, the drag is written as

F=L,V+C. V.. (8.17)
Substituting
Vi=(V-uw)u and V, =V -V (8.18)
we have
F=Clsuu-V+,(I—uu)-V. (8.19)

The calculation of £, and £, based on the Kirkwood theory is given in
Appendix 8.1. The result is

2an,L

&) =In(L/b) (8.20)
L. =22 (8.21)
Equation (8.19) is solved for V as
1 1
V= [C_u uu +T(I—w)] - F. (8.22)

If there is a macroscopic flow v(r) = K - r, there is an additional velocity
K - R for the rod at point R, and eqn (8.22) becomes
1

1
V=[C—“uu+—L(I—uu)]°F+x-R. (8.23)

This is the result of hydrodynamic calculation.}

8.3.2 Smoluchowski equation including both translational and rotational
diffusion

We can now write down the Smoluchowski equation which includes both

the rotational and translational motions. Let W(R, u;t) be the probabil-

 Note that in the case of a rod, V is independent of the torque N acting on it. In the
general case, this is not true. (Consider for example a screw: the torque turns the screw and
causes a translational motion.) The formula for the general case is given in refs 6 and 11,
and an example of its application to the Brownian dynamics is given in ref. 12
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ity distribution function for the rod in the configuration (R, u). The
velocity V'is given by

1 1 3
V——[C—uuu+—L(l-uu)] oz (kT W+ U) +x-R. (8.24)

The angular velocity is again given by eqn (8.13). Substituting this in the
continuity equation

v 3
- 3R (V¥) - R - (0P) (8.25)
we get
¥ 3 ¥ W U 3
> 3R . [D"uu + D, (I —uu)] - [8R kBTaR] R (x - RW)
+DR- (atp o gw) R-(uXK-uW), (8.26)
B
where
kBT ksT In(L/b)
8.27
D= C“ 27m, L ( )
and
D, = kBT ksT ln(L/b). (8.28)

- 4nn,L

The constants Dy and D, characterize the diffusion parallel and
perpendicular to the rod axis: if the rod is along the z axis, then the
displacement of R in a small time interval At is given as

((R(A) — R(0))*) = {(Ry(A?) — R,(0))*) = 2D, At

((R(A1) - R,(0))*) =2DyAt. ¢2)
Since Dy > D, the rod can move more easily in the direction parallel to
the axis than that perpendicular. Due to this anisotropy in the diffusion
constant, translational and rotational motions of a rod are generally
coupled with each other. For example, a concentration gradient of the
rodlike polymer can induce an anisotropy in the orientational distribution.
However, the reverse is not true: in a homogeneous system (in which the
positional distribution is uniform), the translation—rotation coupling has
no effect: if the system is homogeneous, it will remain homogeneous even
if the orientational distribution is not isotropic. Thus in a homogeneous
system, one can discuss the rotational diffusion using eqn (8.15) instead
of the full Smoluchowski equation (8.26).



298 DILUTE SOLUTIONS OF RIGID RODLIKE POLYMERS

8.4 Brownian motion in the equilibrium state

Having obtained the Smoluchowski equation, we now study the charac-
teristic features of the Brownian motion of a free polymer (U =0 and
x=0).

8.4.1 Vector correlation function (u(t) -u(0))

To see the rotational motion, let us consider the time correlation function
(u(t) - u(0)). According to the general prescription given in Chapter 3,
this is calculated by

(u(t) - u(0)) = fdu du'u-u'G(u, u'; t)¥.,(u'), (8.30)
where W, is the equilibrium distribution function
1
Weq(w) = — (8.31)

and G(u, u'; t) is the conditional probability that the polymer is in the
direction of u at time ¢, given that it was in the direction &’ at time ¢ = 0.
This probability is the Green function of the diffusion equation

-‘%G(u, u';t)=D,R°G(u, u';t) (8.32)

with the initial condition
G(u,u';t=0)=6(u—u'). (8.33)

Though the explicit form of G(u, u’; ) is available (see for example ref.
13 Chapter 7), the time correlation function can be calculated directly as
before. The time derivative of (u(¢) - u(0)) becomes

-58; (u(t) - u(0)) = fdu du'u - u'[a% G(u, u'; t)]"pcq(“')

=D, fdu du'u - w'[R°G(u, u'; )| Wey(u'). (8.34)
Using eqn (8.10) for the right-hand side, we get
gt (u(t) - u(0)) =D, fdu du'[R%u - u'\G(u, u’; )W (u'). (8.35)

By a straightforward calculationt
R, ug = —e€qp,U,. (8.36)

T Here e,g, is Levi Civita’s symbol, i.e. e,5, =e, - (¢5 X¢,), Where e, is the unit vector in
the direction of the & axis.
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Applying this twice, we have
Qtf,up = — €apy R olly = €4pyC ayulhy = —2Ug. \ (8.37)

Hence eqn (8.35) is written as

5 (80 w(0) = ~2D, [du dw'u - w'Glw, 5 D¥eo(w)

= —2D,(u(t) - u(0)). (8.38)
Since (u(t) - u(0)) is equal to 1 at time ¢ =0, eqn (8.38) gives
(u(t) - u(0)) =exp(—2D,t). (8.39)
The rotational correlation time 7, is thus given by
7, =1/2D, (8.40)

From eqn (8.39), it follows that
((u(®) —u(0))*) =2—2(u(t) - u(0))
=2(1 — exp(—2D,1)). (8.41)
For tD, << 1, eqn (8.41) reduces to eqn (8.1), which gives a clear physical

meaning of D,.
In the same way, one can show"

3([u(?) - u(0))* - 3)) = exp(—6D,1) (8.42)
or in general
(P,(u(t) - u(0))) =exp(—D,n(n + 1)t) (8.43)
where P,(x) is the Legendre polynomial of n-th order
P,(x)= 2,,1’1! g; (x*- 1)~ (8.44)

8.4.2 Translational diffusion
Consider the mean square displacement of the centre of mass:

¢(1) = ((R(+) - R(0))*) (8.45)

This is calculated by essentially the same method as before. Let
G(R, u, R', u';t) be the Green function for the configuration (R, u),

aﬁtc - [D,gez +£ . (Dyuu + D, (I - uu)) .-a%]c (8.46)

with the initial condition
GR,u,R',u';t=0)=86(R—R')6(u—u). (8.47)
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Then ¢(¢) is calculated from
o) = j dR dudR’ duw'(R — R'’G(R, u, R', u'; )¥.(R’, u’). (8.48)

We again evaluate the time derivative of ¢(f) using eqn (8.46). The
resulting equation is written, after integration by parts, as
a%(f)(t) = IdR du dR’ du’'GY¥Y.,

9

o
2 e - L]
X [D,Q +8R (Dyuu + D, (I — uu)) 3R

|-y

= f dR du dR’ du'GW, (2D, + 4D,) = 2(D; +2D,). (8.49)

Hence
¢(t)=2(D) + 2D ). (8.50)

Thus ¢(¢) increases linearly with ¢ and the diffusion constant D defined
by

Do = lim = (R() - RO)?) (8.51)

is given by

_ D“ +2D, _ In(L/b)
3 3mL

This formula can also be directly derived from the Kirkwood formula for
the diffusion constant eqn (4.102).

It must be noted that although ¢(¢) increases linearly with time, the
diffusion of R is not Fickian because of the translation—rotation coupling.
Indeed as will be shown below, G(R, u, R', u’';t) is not Gaussian in
R — R’'. The Fickian diffusion is recovered if the relevant length-scale is
much larger than L.

Dg ksT. (8.52)

8.4.3 Dynamic light scattering

As before, the Brownian motion of the polymer can be studied by
dynamic light scattering.”® If we take the shish-kebab model shown in
Fig. 8.2, the dynamical structure factor is given by

N2

sk D=5z 2 (explik-@O-RaO)). (65

(Note the normalization of eqn (8.53) is chosen so that g(0, 0) = 1, which
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is different from that chosen for flexible polymers.) Since

R, =R + nbu (8.54)
the sum over n is
NP2 N2
> exp(ik - R,) =exp(ik - R) f dn exp(ik - unb)
n=-=N/2 N2
_ ) sin(k - uNb/2) _ _ sin(k - uL/2)
=2 exp(ik - R) X -ub = Nexp(ik - R) X-uLl2 (8.55)

Thus g(k, t) is expressed by R(¢) and u(¢) as

_ - _ sin[K - u(t)] sin[K - u(0)]
gk, ) = (exp(ik - [R() - RO Z - B0
where

> (8.56)

K=kL/2. (8.57)
Let Gy(u, u’;t) be the Fourier transform of the Green function
G(R, u, R’, u'; t), which depends only on R — R’,
Gilu, u'; 1) = I dRe*RG(R, u, 0, u'; 1) (8.58)
then

gtk )= [ [ Gyt ' SIS

From eqns (8.46) and (8.58), G,(u, u'; t) satisfies

W (u') (8.59)

5 .
(5; + r)G,,(u, u';6)=0 (8.60)

with
I'=—D,%*+ Dy(k - u)® + D.[K* — (k - u)’). (8.61)

The solution of eqn (8.60) is involved, so here we shall briefly describe its
characteristic aspects. The limiting cases are:

(i) |[K|«1, ie., |k| L« 1.
In this case, it is intuitively obvious that g(k, ¢) is described by the
Fickian diffusion with the diffusion constant Dg, so that

g(k, t) = exp(—Dgk?t). (8.62)

A formal justification of this is made by considering the eigenfunction
expansion of G,. Let y, and A, be the eigenfunctions and the
corresponding eigenvalues of I'.

Fy, =49, (8.63)
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Then
Gi = 2 exp(=A, 1)y, () ¥, (). (8.64)
P
Substituting this into eqn (8.59) and using K << 1, we have
_1 _ sin(K - u)\>
80k, 0= 3, exp(~2,0) [ auy, 0 = 77)
1 2
= exp(~1,0)( [ duy,(w)) (8.65)

If k =0, the eigenfunctions are given by spherical harmonics Y}, (u) with
the eigenvalues A{Q = D,I(! +1) and only the term of the lowest eigen-
function Yp(u) = 1/V(4x) remains in the sum of eqn (8.65). If k is small,
the relaxation is still dominated by the eigenfunction of the lowest

eigenvalue
g(k,t) = exp(—Aot). (8.66)
Ao is obtained by perturbation theory:

Ao= f duYool Yoo / I duY?3, = 2"%212* k*=Dgk* (8.67)

which justifies eqn (8.62).
For the above perturbation calculation to be justified, Ao must be much
smaller than the next smallest eigenvalue AS), =2D,, i.e.,

Dgk*> << 2D, (8.68)
which is rewritten using eqns (8.16) and (8.52) as
k| L «< 1. (8.69)

Equation (8.69) indicates that if the relevant length-scale is much larger
than L, the diffusion can be regarded as Fickian with the diffusion
constant Dg.

(i) |[K|>1, i.e., |[k|L>1.

In this case, g(k, t) is not expressed by a single exponential. However,
the initial decay rate is calculated easily:

0P = - L 1n(g(k, )lhmo

(k 0)J'd“sm(K u)f‘sml((K. u) W, (u)

de sn(KE) k) / f (KD g
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where
E=K-u/|[K| and K=|K]|. (8.71)
By using the relation
8F u X KoF
RF R 8.72
(&) =R 5= TxT 3¢ (8.72)

we have, after some calculation,
M@ = i 2 2 2 |/ Sin(KE)
f[ e _[ 5(1 £) §+D,,k2§ + D k(1 - 5)]( XE =)
(8.73)

The integral over & is carried out analytically by using the fact that X is
large: for example,

J (Y L a2 L -

Straightforward calculation gives finally®

=D, k*+ % D, k. (8.74)

More detailed studies are given in the literature.

Since rodlike polymers have a large optical anisotropy, they have a

significant depolarized light scattering, which is particularly suitable for

studying rotational diffusion. In the small-angle regime |k| L <<1, the
dynamic structure factor is written as'®

8aep(k, 1) x exp(—Dgk* — 6D,t), (8.75)
the decay of which is mainly determined by D,.

13-18

8.5 Orientation by an electric field

8.5.1 The effect of an electric field

An electric or magnetic field can orient the polymer, and measurement of
this process gives information on the rotational motion of polymers in
solution.’®? Using the Smoluchowski equation, we shall consider the
orientation caused by an electric field.

Elementary electrostatics says that if an object with dipole moment p is
placed in an electric field E(¢), it feels a torque

N=p XE. (8.76)
The dipole moment p consists of two parts, the permanent dipole p, and
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the induced dipole p;. For thin, rodlike polymers the permanent dipole is
always parallel to u, the direction of the polymer, and is written as

Py = lu (8.77)

where u is the magnitude of the permanent dipole moment. On the other
hand, the induced dipole moment is written using the parallel and
perpendicular polarizability ) and a, as

pi=ayu-E)u+a,(E—(u-E)u)
2, I
=[ﬂ%’—l+(a"—al)(w~§)]°E=a~E. (8.78)

Hence the torque acting on the polymer is written as
N = (pp + p;) X E

=uu XE+ Ac(E ‘u)uXE (8.79)
where
Aa=af"-—afl. (880)
The potential which gives such a torque is
=—uu-E-3Aa(E - u)’ (8.81)

The orientation of the polymers can be studied by measurement of the
dipole moment

(p)=(uu+a-E) (8.82)
or the birefringence. The refractive index tensor 7,z is written as
fiapg=nb .5+ A Uiy —36,p) (8.83)

where A is a constant which includes contributions from both the form
birefringence and the intrinsic birefringence.

8.5.2 Dielectric relaxation

We now calculate the average dipole moment under a given electric field
E(t). The diffusion equation to be solved is

ow y

2 _pa-[awe L au] .

o D + kBTaU (8.84)
To obtain (u), we multiply both sides of eqn (8.84) by u# and integrate
over u.

-gt(u) =D,fduu(922tp+ a%- gw). (8.85)
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Integration by parts leads to

0 2
2 w=n (= u>-k—ﬁ<au - RU)). (8.86)

As before, R*u gives —2u, and (Ru- RU) is calculated from eqn

(8.81). Hence

%(u).—:D( 2(u)——((u E)u- E)———-—((E ‘u)’u—(E - u)E))
(8.87)

We shall consider the linear response, in which case we can neglect the
third term and evaluate the average in the second term for the isotropic
distribution function of u:

(@Ey-Eo= [ l@-Ey-E]=-3E  (&89)
Hence
3 _ 2D,u
Ey (u) =-2D,(u) +3k3TE' (8.89)
The solution of this equation is
(u) = I dr’ exp(—=2D,(t —¢ )) 3ka E(t ). (8.90)

From eqns (8.82) and (8.90), the dipole moment is given by

(p) =22 j dr exp(-2D (¢~ {NEW) + M B, (891)

For an oscillating electric field where

E(t) = Re[E exp(iot)), (8.92)
the dipole moment is calculated as
(p) =Re[a*(w)E exp(iwt)] (8.93)
where
w1 ay + 2a
ot — 1 L
a*(@)= 3k,T 1+ioT + 3 (8.94)
with
3
t=1/2D, = 717, L (8.95)

6kzT(In(L/b) —y)"
a*(w) is called the complex polarizability. Note that the induced dipole
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moment shows no frequency dependence. Dielectric relaxation experi-
ments have been carried out for various polymers.'*?2

8.5.3 Electric birefringence

Calculation of the clectric birefringence is slightly more complicated
because it is a second-order effect in the electric field.?° Let us consider
the case that a time-dependent, weak electric field E(¢) is applied in the z
direction. Straightforward perturbation calculation gives®*

(u2-u2) =30, f dt, exp[~6D, (¢ ~ t)]E(1Y
+§D2 ) Idfl exp[—6D,(t — t1)]E(t,)

X ]dtz exp[—2D.t, — )| E(t,). (8.96)

The difference in the refractive index An =n,, —#a,. is proportional to
(u2 - u?). The response of An for various hlstones is immediately
calculated from eqn (8.96).

(i) Steady state:
If the electric field is constant, egn (8.96) gives

2 [ 2

(- uz) = [kBT (kBT) ]E ®.97)

Thus
An=K0E2
with
Aa u\?
cali@)]
0 15 k3T+ kT (8.98)

which is called the Kerr constant. It consists of a permanent and an
induced dipole term. If the polymer has a dipole moment, their ratio
2

__#
R=fok7 (8.99)

is much larger than unity since both g and A« increase in proportion to
the molecular weight.

(ii) Decay: a constant field E is switched off at t=0, i.e., E(t)=
E®(-t), and

An(t) = KoE? exp(—6D,1). (8.100)
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(iii) Rise: a constant field is applied at ¢t =0, i.e., E(t) = E©(t), and

An(t) = KoEz(l - exp(—2D,t) + 252 2 ey exp(—6D,t)) .

(8.101)

(iv) Reversal: the direction of a constant field is changed at t =0, i.e.,
E=—E®(-t)+ EB(t), and

2(R +1)

An(f) = KOEZ[I + ﬁ% (exp(—6D,t) — exp(~2D,t))] . (8.102)

(v) Oscillation: E(t) = E cos(wt). The response for this field is written
as

An(t) = EY[Ky(@) + Re K2 (w)exp(2iwr)] (8.103)
where
Ke /| R
Kee= s \Ix (@i 1) (8.104)
and
K R 1
Ko@) = 2(R +1) [(1 +2iwz/3)(1 + lm‘r) (1+2iw /3)] (8.105)

where 7 is given by eqn (8.95).

8.6 Limear viscoelasticity

8.6.1 Expression for the stress tensor

We now consider the viscoelasticity of a solution of rodlike polymers. As
was discussed in Chapter 3, the stress tensor consists of two terms, the
elastic stress 0% and the viscous stress o).

The elastic stress is related to the change in the free energy & (per
volume) for a virtual deformation 8¢,4 as

6d = U&?éfaﬁ. (8. 106)

Since the free energy is given by
oA = v[du(k,T‘P In¥+WU) (8.107)

(where v is the number of polymers in unit volume), the change in o is
written as

o5t =v f du(ksTOW InW + ky TOW + SWU). (8.108)
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The change 8W is calculated using the Smoluchowski equation (8.15).
For the instantaneous deformation, the velocity gradient k,g = 8¢,5/6¢
(6t being the duration time of the deformation) dominates the time
evolution of ¥, so that

%z —R- (XK -u¥) during the deformation. (8.109)

Hence
W=-R-(uXK-u¥V)ot=~-R-(uXdbc -u¥). (8.110)

Substituting eqn (8.110) and integrating by parts, we have

m=vfdu(k,r(uxas-u).aqu-(uxas-uw).sm/)

=v Idu‘l’(—k,m (X 8¢ -u) + (u X 6€ - u) - RU). (8.111)

The underlined term can be calculated using eqn (8.36):

R - (uX 68 - u) = —386,5(Uqls — 1843). (8.112)
Hence
8t = vBeqg j AuW(3ks T (ot — 1805) — (u X RU) ug)
= 1’68“3(3’(37‘(“““‘3 - %60,5) - ((u X aU)auﬂ )). (8.113)
Thus

00F = 3vksT (ugttg = 18,5) — v{(u X RU),ug). (8.114)
If U =0, the stress is given by

o = 3vkgTSap (8.115)

Sap = (Ualig — 3805), (8.116)

which is called the orientational tensor. Note that this stress comes
entirely from the Brownian potential. That the Brownian motion of a rod
can produce a stress may be understood in the following way. Suppose a
rod is placed at the origin along the z axis (see Fig. 8.5). If the rod
rotates by Brownian motion, it will create flow of the surrounding fluid as
in (@) or (b) of Fig. 8.5, depending on the direction of the rotation.
Whichever direction the rod rotates, the fluid around the z axis comes
towards the rod while the fluid in the x — y plane goes away from the rod
as shown in (c). This fluid motion is equivalent to the appearance of the
stress o,, — O,,.

The viscous stress is related to the hydrodynamic energy dissipation W
by (see Section 3.8.4)

with

W = K,p057 (8.117)
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\

“\\\//g’: e

©

Fig. 8.5. Explanation of the stress expression (8.115). The rotation of the rod
causes fluid flow as in (@) or (). The direction of the rotation is random, but on
average, the fluid moves as shown by thick arrows in (c).

A crude estimation of W is done easily again by neglecting the
hydrodynamic interaction in the shish-kebab model. Under the velocity
gradient &, the rod rotates with the angular velocity @, = u X (K - u).
Hence the velocity of the n-th bead relative to the fluid is

Vi,=nb(e,Xu—K-u)=nb([uX(x-u)] Xu—x-u)=—nbu(x:uu).
(8.118)

The frictional force acting on the segment is F, = {,V,,. Hence the work
done by the frictional force in unit time and unit volume is

-VE (Fy+ Vo) =v 2 Lon®b*( (K :uau)?) = v, ( (K : uu)?)

n=-=N{2
(8.119)
where
_n W
b= > tontp?=TE (8.120)
n==N{2
Hence
051'6 sttr uv(u Uyt uﬂ) (8121)

Note that in this case, . is equal to the rotational friction constant &,
(see eqn (8.4)). If the hydrodynamic interaction is taken into account, £,
is given by /2 (see Appendix 8.I). We shall consider only this case,
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whence

oSy = % E iy (Uatigu 1ty ). (8.122)
Thus the stress due to the polymer is
o) =08+ oly
= 3k TS5 — v{(8 X RU)ou) + % £y (Ualtgts, i, ) (8.123)

and the total macroscopic stress in the solution is
Uw = 4'3 + ns(xap + Kpa). (8.124)

8.6.2 Calculation for weak velocity gradient

Let us now calculate the stress tensor under a weak velocity gradient. If
we consider the case U =0, then eqn (8.15) becomes
oA 4

5= DRY - R - (uXx-u¥). (8.125)

To calculate S,z we again multiply u,us — 6,5/3 by eqn (8.125) and
integrate over 4. The equation is then rewritten by integration by parts as

a%S,,,; = f duW[D,R*(u,ttg — 36,5) + R(uyttg — 36,p) - (4 X K - w)].
(8.126)

The terms in the bracket is calculated directly giving

o
3528 = —6D,(Ugttg —304p) + Ko, (Uutt ) + Kg, (U, the ) — 2K, {UgUgu, 1t )
= —6D,S,5 +3(Kop + Kpa) + KawSpu + KpuSuy — 2K,y (Ugtigu,u, ).

8.127)

To calculate the first order in k, the coefficients of x,z can be replaced by
their equilibrium values. Since at equilibrium

Sap=0 and (u,ugu,u,) =75(8,50,, + 84,08, + 82v0p,) (8.128)
eqgn (8.127) is approximated by

2}
aSap = _6D,S¢ﬂ + %(Kaﬂ + Kﬂa') —%Kw(aapﬁm + 60,“659 + 6w6p”)

= _6DrSa'8 + %(xa'ﬂ + Kﬂa)' (8. 129) ‘
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(Here the incompressible condition k,, =0 has been used.) This is solved
by

Sup0) =3 [ Q8" exp=6D,(0 — ))(Kep ) + Kpulr).  (8130)

From eqns (8.123), (8.128), and (8.130), the stress is obtained, to the first
order in kg, as

o8)(¢) = vk, T J' dt’ exp[—6D,(t — t')|[Kaps(t') + Kpalt')]

+ 3—‘(') £ (Kap(8) + Ksal?)). (8.131)

For the shear flow

. ={x(r) foroe=x and S =y,
* 1o otherwise.

Equations (8.124) and (8.131) give

(8.132)

0, (1) = n,x(f) + 3vkgT I de¢’ exp[—6D,(r —¢')|x (') + % E.x(0).

(8.133)
Let us consider two special cases.

(i) Steady shear flow: x(¢) is constant, for which eqn (8.133) gives

vikgT v,
Oxy = (m + 1080, + g)x = (n, +&vL,)x. (8.134)

Thus the viscosity of the solution is

27, L?
= + A = . .
n Ns 15 'VCr Ns +45(ln(L/b) _ ‘}’) (8 135)
The intrinsic viscosity is defined by
.1
[7]=lim —(n — »,) (8.136)

0 P

where p is the weight of polymer in unit volume, which is expressed in
terms of v and the molecular weight M of the polymer as

M
PNV (8.137)
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Thus
2xL’® N,

= e - M

(i) Oscillatory flow: x(f) = xo Re(e'™). The stress for this flow defines
the complex viscosity n*(w) by

a,, () = xgRe(n*(w)e'™). (8.139)

(Note: The complex viscosity is related to the complex modulus by
n*(w)=iwG*(w).) From eqn (8.133), it is easy to show that

(8.138)

. _ VkBT( 1 l)
(@) =%+ \TTiaz, '3 (8.140)
where
3
T, = — L 8.141)

~ 6D, 18(In(L/b) — y)ksT
The intrinsic complex viscosity is defined by
1

[7*(@)] = lim — (n*(@) — 7,) (8.142)
0 P15
which is given by
3 1 1
@)=l +)- (8.143)

Note that [n*(@)] has a finite value as @-> %, which arises from the rigid
constraints of the rods. The relaxation time for [n*(w)] is one third of the
relaxation time in the dielectric relaxation. Since L is proportional to M,
[n] and 7, depend on the molecular weight,

[« M*(InM—-K), 17,xM/(nM—K) (8.144)

where K is a constant. These results have been well confirmed by
experiment.”’%

8.7 Nonlinear viscoelasticity

8.7.1 Decoupling approximation

In Section 8.5 and 8.6, we considered the case that the perturbation due
to the external field is small. This allowed us to replace the unknown
fourth moment {u,ugu,u,) by its equilibrium value. If the external field
is large, this approximation becomes invalid.

The standard way of handling this nonlinear case is to expand the
distribution function in spherical harmonics and solve the resulting
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equation for the expansion coefficients numerically. Although this exact
numerical method is available,” it is valuable to see analytically where
the characteristic features of the solution have their origin. To do this, a
simple approximation is available which is to express the unknown
quantity (uuuu):x in terms of (uu). There are many ways of doing this
(see the discussion in ref. 31). A simple one is to assume®

<uauﬁuuuv )Kuv = A(uauﬁ) (uuuv)xpv + B(“a'uu ) (uﬂuv )(K,uv + Kvu)
(8.145)

where A and B are constants to be determined. We impose the condition
that eqn (8.145) holds rigorously when the traces of the second-order
tensors of both sides are taken:

(Uglott Uy, ) Kyy = AU thy ) (U thy YK,y + Bugu, ) (uatty ) (K, + K, )
(8.146)

1.e.,
(upuV>KlW = A(u,u, ) K,y + Bupu, ) (ugut, )(k,y +x,,) (8.147)

which gives A =1 and B = 0. Thus the approximation gives
<utruﬂuuuv)xuv = {uauﬁ><uuu$')xuw (8.148)

The advantage of this decoupling approximation is

(1) It preserves the symmetry and the trace of the original tensor
(uuuu) : x. This property guarantees that the resulting equation for S,z is
symmetric (S, = Sg,) and traceless (S, =0).

(if) It becomes correct for the completely ordered state: W(u)=
O(u — n) (n being a unit vector).

Other decoupling approximations are possible,>* but here we shall only
examine this approximation since it is mathematically simple.

For this approximation, eqn (8.127) is rewritten as

b)
— Sap = —6D,Sup + Koy Spy + KpuSey + 3(Kap + Kpa)

ot
=28, (Sup + $0.p)- (8.149)

8.7.2 Elongational flow
First we consider steady elongational flow,
Kix = — %8: Kyy = — %8, K;; =§,

K«p=0 for other components. (8.150)

In this flow, the diffusion equation can be solved rigorously, so that it is
possible to check the accuracy of the decoupling approximation. Since x
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is written as
K= ; (3e.e, = 1),
eqn (8.125) becomes

%qf -D®- ( 2‘; ) (8.151)

In the steady state, eqn (8.151) can be rigorously solved to give

3 ‘
¥ = const exp[ ,)2] = const exp( 43; 2) (8.152)

4D,
Thus S,, is calculated as

S,.= f du(u? - 1/3)exp(-— u ) / J' du °XP(431; 2)

- f aie— HexpGEr) | j dt exp (&) (8153)
0 0

where §= ¢/D,.
On the other hand, eqn (8.149) becomes

2
ot
Since S, + S,, + §.. =0, §,,k,, is calculated to be

S,, = —6D,S,; + 28S,, +3& — 28, ,5,,(S,, +3). (8.154)

SyvKy = — g (S +S,,) + &5, =385, (8.155)

Hence eqn (8.154) is written as

Ea;Szz = -Dr[6szz - 2& 2z~ %E + 3§S,,(Szz + é)]. (8. 156)

The steady-state solution of eqn (8.156) is

S -g B - 2‘1, + (%_4%+ZZ_2)‘”] (8.157)

In Fig. 8.6, eqns (8.153) and (8.157) are compared. Though the
decoupling approximation is not correct for small &, the difference
becomes smaller as & becomes larger.

8.7.3 Shear flow
Next we study a simple shear for which

{x ife=xand =y,
Kop =

0 otherwise. (8.158)
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06}
L decoupling
0.4

rigorous

0.2

315

E=¢/D,

Fig. 8.6. Effect of the elongational flow on the orientational order parameter.
For small &, the decoupling approximation gives S., = §/9, as compared to the

rigorous results §,, = §/15.

Therefore eqn (8.149) becomes
.
ot
3 1

3 S = —6D, S, — 2KS,,( Sy +3) + 2K,

d 1

> $,, = —6D,S,, —2kS,,(S,, +3),
9
ot

In the steady state, these equations are rewritten as

Se(1+38S,,) =1& +3ES,,,

8., = —6D,S,, —2KkS2%, + KS,, +1x,

S;. =—6D,S,. — 2KSxy(Szz + %)'

SH - __%_gi‘L ,
9(1 +1ES,,)
Syy =3..= - %Sxx’
where
& =x/D,.

(8.159)
(8.160)
(8.161)

(8.162)

(8.163)
(8.164)
(8.165)

(8.166)
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For small &, these equations are solved by
Sy =18  Su=2&, S,=85.= -k (8.167)
and for large &
Sy =083,  S,.=%-22/8)". (8.168)
The shear stress is given by
K

6—D—s,,) . (8.169)

o® =3vkpTS,, + -;- §xS2,=3vky TS,,(I +
For small k, eqn (8.167) and (8.169) gives
o® =1tvi k. (8.170)

The viscosity calculated by the decoupling approximation is 5/4 times
larger than the rigorous value of eqn (8.135). For large x, o is
dominated by the viscous stress

®~Y ¢ 52 k\"?
o~ £xS%, = dvky T D,) . 8.171)
Thus the intrinsic viscosity decreases in proportion to x~%>. On the other
hand, rigorous asymptotic analysis**> and the numerical calculation®® show
that the intrinsic viscosity decreases as x ~'~,

8.8 Effect of flexibility

So far we have been considering the dynamics of rigid rods. Real
polymers have greater or lesser flexibility. This can be modelled by a rod
which has an elastic energy for bending. For the polymer which has
constant contour length, the simplest possible model will be the follow-
ing. Let R(s) be the position of a point on the chain at the contour length
s. The vector

u(s) = % (8.172)

is a unit vector tangent to the chain. The straight rod corresponds to
u(s) =constant, or Ou/ds=0. Thus the bending energy must be a
quadratic of du/3ds. Since u - du/3s =0, the only quadratic form is

Usong = 3E Tds(i—:)z (8.173)

where E is a constant. The conformational distribution of the polymer is
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thus given by the Boltzmann distribution for this energy:

L
i) =eo - [(3) ]
- = - —_ 174
lIl[u]Otexp( %, T exp 4/Iods % (8.174)
where
kT
=== 17
A 2E (8.175)

This is called the Kratky—Porod model,* and the length (2A)7' is
referred to as the persistence length,

Equation (8.173) indicates the analogy between the change of u(s) of
the Kratky-Porod model and the time evolution of #(f) in rotational
Brownian motion: both processes are Gaussian with the constraint
u®> =1.* From eqn (8.174) it can be shown that for small s

{(u(s) — u(0))*) =4As (8.176)

which indicates that A plays the role of D, in the rotational Brownian
motion. Thus the correlation functions of u(s) are immediately obtained
from the result of eqn (8.43). In particular

{u(s) - u(0)) = exp(—2As) (8.177)

from which the mean square end-to-end distance is calculated as

R = ((R(L) - RO)Y) = [ ds [ ds'(u(s) - us")

L s
1
=2 ! dsl'ds' exp(—24(s — 5)) = %“ — o l1-exp(-2AL)]. (8.178)

The two limiting cases are:

(i) LA>>1 (the random flight limit},

R*=LIA (8.179)
(ii) LA «1 (the rigid rod limit),
R*=12 (8.180)

To develop a complete theory for the dynamical properties is difficult,
but various approximate treatments have been proposed. Crudely speak-
ing, the flexibility affects the dynamical properties in two respects.

Firstly, the flexibility changes the transport coefficients. As the size of
the chain decreases with the increase in the flexibility, the diffusion
constant Dg, which is roughly proportional to R;', increases, and the
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intrinsic viscosity [n] (= R}) decreases. The results of various approaches
are summarized in refs 1 and 36.

Secondly, the flexibility gives a relaxation in the high-frequency region.
For example, according to the rigid rod model, the complex intrinsic
viscosity [n*(w)] approaches the finite value

(7] = lim [n*(w)] =3i[n]. (8.181)

For the flexible polymer, [p*(w)] decreases as the frequency becomes
comparable to that of the bending mode.”® The experimental situation is
summarized in ref. 29 and theoretical analysis is in ref. 37.

Appendix 8.1 Derivation of the Smoluchowski equation by the
Kirkwood theory

In this appendix we derive the kinetic equation based on the Kirkwood
theory described in Section 3.8, and using the model shown in Fig. 8.2.
The position vector of the n-th segment (—N/2 <na < N/2) is written as

R,=R +nbu. (8.1.1)

Let V, and F, be the velocity of this segment and the force acting on it.
The velocity V, is expressed by the velocity ¥V of the centre of mass and
the angular velocity o

V.=V+nboXu (8.1.2)
which can be also written in terms of the mobility tensor H,,, as
V,-x-R,=> H,,'F, (8.1.3)
From the definition of H,,, (eqn (3.106)) and eqn (8.1.1), it follows that
H, =@u+Dh,, n¥m (8.1.4)
with
Bom = 1/87n, |0 — m| b. (8.1.5)

In eqn (8.1.4), we neglected the term #4,,,. The validity of this approxima-
tion is discussed later.

Now the total force acting on the centre of mass is given by L, F,.
Equating this with that given by the thermodynamic potential we get

S F,= -%(k,?’lnlp +0). (8.1.6)
Similarly the balance in torque is written as

> nbuXF,=—-RksT In ¥ + U). (8.1.7)
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Our aim is to express ¥V and o in terms of the quantity on the right-hand
side of eqns (8.1.6) and (8.1.7). For that purpose we solve eqn (8.1.3) for
F,,

F,=2 (H ) (V=K Rp) (8.18)
where (H™Y),., is the inverse of H,,,, i.e.,
D Hy (H Y = 6,k (8.1.9)
From eqn (8.1.4), (H™"),., is written as
(H Dpm = (h“),.m(l — %‘) (8.1.10)

where (h™"),,, is the inverse of 4,,,,

> B Ve = e (8.1.11)

We substitute eqn (8.1.8) into eqns (8.1.6) and (8.1.7), and use eqn
(8.1.2) to obtain

3

;’:"(H'l),.,,,-[(V+mbw><u) — & (R +mbu)] = -5 (ks TIn ¥ + U)
(8.1.12)

>, nbu X (H™ ) - [V+ mba X u— K« (R+mbu)]= —R(kyTIn ¥ + U).

" (8.1.13)

Using eqn (8.1.10), the right-hand side is rewritten as

> (h“),,,,.(l—%) (V—K-R)= —-a%(kaTln‘I‘+ U) (8.1.14)

S (k1) nmbu X (: —-i‘) (@Xu—K-u)=—R(kyTInW + U).

u
2
(8.1.15)

(Here we used the property X, ,,7n(h~ "), =0, which follows from
Brm = h _p_m.) Defining

6= (h™ Ym, (8.1.16)

£ =022, (h™Y)unm, (8.1.17)
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we rewrite eqns (8.1.14) and (8.1.15) as
uu )
C,(l —7) (V-K:R)= -2 (ksTWW+U)  (8118)

Cux(@Xu—K-u)=CL(0—uXK-u)=—RksTIn¥+U), (8.119)

which is solved for ¥V and o giving

V=K-R—1(I+uu)-%(k8Tln'-P+ U), (8.1.20)
4
w=uxx-u—ClQ(kBT1n‘P+U). (8.1.21)
Comparing eqn (8.1.20) with eqn (8.24), we have
E.=8, §=tCl2 (8.1.22)
Substituting this into the conservation equation (8.25), we finally get
o¥ L 4
E—D,Q‘ I:QIP'FEQU] — R (uXK-uW)

¥, W aU|_ 3
3R k;T3R] 3R

; [
—_— . XK RY d1.2
+D, R (I + uu) K (8.1.23)

where
D, =kpT/, and D,=kgT/¢,. (8.1.24)

Equation (8.1.23) agrees with eqn (8.26).
Next we obtain the expression for the stress tensor. According to eqn
(3.134),

08 =—v 2 (FuRys) . (8.1.25)

Substituting eqns (8.1.1), (8.1.2), and (8.1.10) into eqn (8.1.8), we obtain
the force F, as

F=3 (h"),.,,,(l —%) [V +mboXu—K-(R+mbu)]. (8.1.26)

Here we consider the case when the total force acting on the polymer is

ZEero,
> F,=0, (8.1.27)

which gives V=K R, and

F=3 (h“),,,,,(l - 12“-) [mboXu—K-mbu].  (8.1.28)
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From eqns (8.1.25) and (8.1.28), it follows that

08 =—v 2, (B )umnmb?((© X ) g — (K - #)ottg + Sutjugu - K - u).
(8.1.29)
Finally, substituting eqns (8.1.17) and (8.1.21) we get

08 = v{(eapity By (kT In W + U))ug) + g Eugupu,u,x,, ). (8.1.30)

The first term on the right-hand side of eqn (8.1.30) is rewritten using
integration by parts (eqn (8.10) to give

(upe gy ytt, R, ln W) = jdueanvuﬁmgiyw

= e,w.,jdu(—‘l’)%“uﬂuv

=3(u,,uﬁ —%6,,5). (8.1.31)
Hence
08 =3vka T {ustig —38,5) — v{(u X RU) ug)

v
+ 5 CrKuv (ua Ugl,ld, )' (8 132)

The first two terms represent the elastic stress, and the last term is the
viscous stress.

Finally we calculate the friction constants £, and £, using eqns (8.1.16)
and (8.1.17). Since h,, decreases quickly with |n —m|, we may ap-
proximate it by

P = B8, (8.1.33)
with
" 1n(N/2)
h=2 f dmhq,, = , 134
] Hom 4mnb (8 )
(™ Ym = Sum/h. (8.1.35)

Therefore from eqns (8.1.16), (8.1.17), and (8.1.35)
N 4an,Nb  4mn,L

=% =In(N/2) " in(L/2b) (8.1.36)
and
(. mt_an,(NBY L
6 =2b ! I = 3In(N/2)~ 3In(Lj2b)" (8.1.37)
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9

SEMIDILUTE SOLUTIONS OF RIGID
RODLIKE POLYMERS

9.1 Semidilute and concentrated solutions of rodlike polymers

In Chapter 8, we discussed the dynamics of a single rodlike polymer. Let
us now consider the interaction between the polymers at finite
concentration.

Solutions of slender rodlike polymers of length L and diameter b may
be classified into four concentration regimes (Fig. 9.1). Let p be the
weight of polymers in unit volume of the solution, then the number of
polymers per volume is given by

v =1—5NA (9.1)
where M is the molecular weight.

(i) Dilute solution (Fig. 9.1a). A dilute solution is defined as one
having a sufficiently low concentration that the average distance between
the polymers v~'? is much larger than L, i.e.,

vy, =1/13 (9.2)

In such a solution each polymer can rotate freely without interference
by other polymers. The effect of the interaction can be expressed
by a power series expansion with respect to v as in the case of flexible

polymers.

(ii) Semidilute solution (Fig. 9.1b). If v> v, the rotation of each
polymer is severely restricted by other polymers, so that the dynamics of
the polymers will be entirely different from that in dilute solution.
However, the static properties will not be affected seriously until the
concentration reaches another characteristic concentration v,. This is
easily seen if one considers that the polymers are mathematical lines with
no thickness. The equilibrium distribution of such polymers is entirely
independent of each other at all concentrations. Thus the effect of the
interaction becomes important in static properties only for polymers with
finite diameter. Indeed the excluded volume of rigid rods is shown to be
of the order of bL? (see Fig. 9.2)), so that the static properties are
unaffected if vbL? is small. We call the concentration regime

v, <Sv<Kv,=1/bL? (9.3)
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(a) (b) (c) (d)

Fig. 9.1, Four concentration regimes of rodlike polymers: (a) dilute solution, (b)
semidilute solution, (c) isotropic concentrated solution, and (d) liquid crystalline
solution.

semidilute. (Note that this definition of semidilute is different from that
used for flexible polymers.) In this concentration regime, the effect of
intermolecular interaction can be neglected in the static properties, while
the dynamical properties are completely changed by the constraint that
polymers cannot cross each other. We call such an interaction the
entanglement interaction, although rods do not entangle with each other
literally.

(iii) Concentrated (isotropic) solution (Fig. 9.1c). The static correla-
tion of the polymers becomes important at a higher concentration v = v;.
Here, as will be shown later, polymers tend to orient in the same

s T

/
\ -

K
\>/2%\

Fig. 9.2. Excluded volume between the rods in the direction u and u’. For a

given position of the rod in the direction u, the centre of mass of the other rod is

not allowed in the parallelepiped region shown in the figure. The volume of this
region is 2bL? [sin ©| where © is the angle between u and u’.
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direction as their neighbours. If the concentration becomes larger than a
certain critical value v*, which is of the order of 1/bL? the polymers
align on a macroscopic scale in equilibrium, and the solution becomes an
anisotropic liquid. In the concentration regime

v, <vsv* (9.4)

the solution is still isotropic, but the excluded volume interactions among
the polymers are important in both the static and dynamic properties.
Such a solution is called a concentrated isotropic solution.

(iv) Liquid crystalline solution (Fig. 9.1d). The anisotropic solution
above v* is called a liquid crystalline solution. This solution shows a
range of interesting properties quite distinct from those of isotropic
solutions, and will be discussed in the next chapter.

In this chapter we shall discuss the semidilute solution. This is in fact
an ideal system for studying the entanglement effect since the dynamics
of rodlike polymers is much simpler than that of the flexible polymers
and the excluded volume effect is negligibly small.

9.2 Entanglement effect in rodlike polymers

9.2.1 Tube model

In the semidilute region, the dominant interaction is caused by the
topological constraint that the polymers cannot cross each other. This
effect can be treated’? by the same model as that for flexible polymers.
In the situation shown in Fig. 9.1, the motion along a polymer is almost

(@) ®

Fig. 9.3. (a) Tube model for the rodlike polymer. (b) The mechanism of rotation

in semidilute solution. The polymer can change its direction when it disengages

from a tube, e.g., by moving from AB to A’B’ and then to A"B". Reproduced
from ref. 10.
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free, while the motion perpendicular to the polymer is severely limited by
surrounding polymers. Such a characteristic feature of the Brownian
motion can be again represented by a tube which surrounds the polymer
(Fig. 9.3). The tube radius a corresponds to the average distance that the
polymer can move perpendicularly to its own axis without being hindered
by other polymers.

Let us now study how the tube constraint affects the translational and
the rotational Brownian motion.

9.2.2 Translational diffusion

The translational motion is easily analysed. The motion of the polymer
parallel to the tube axis, which is nearly parallel to u, is not hindered by
the tube, so that the parallel component D will be nearly equal to the
diffusion constant in dilute solution Djo.t On the other hand, the
perpendicular motion is limited to within the distance a, so that the
perpendicular component D, can be regarded as zero provided the
small-scale motion of order a is neglected. Thus

D" = D||Or DL = (), (95)

9.2.3 Rotational diffusion

The rotational diffusion can be discussed using the following model (Fig.
9.3b). As long as the polymer stays in a certain tube, its direction is
essentially fixed in the direction of the tube axis. If the polymer moves
the distance L/2 along itself, it disengages from the old tube and goes
into a new tube which is generally tilted from the old tube with an angle
of about e=a/L. If the polymer leaves this tube, it again changes
direction by order &. Thus overall rotation of the polymer is attained by
repetition of this process. If t, is the average time necessary for the
polymer to leave a certain tube, the polymer repeats the process t/7,
times in a time interval ¢. Since the direction u(f) changes about & per
step, the mean square displacement of u(¢) is estimated as

([u(t) - u(O)P) =,ide2. (9.6)

Comparing this with eqn (8.1), the rotational diffusion constant is
estimated as

e [a\?
D,. a"r';— (Z) /Td. (9.7)

T Strictly speaking, l:llnis different from Dy, due to the hydrodynamic interaction among
polymers. However, this effect gives only a Togarithmic correction.”*
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T D

/\ /\

@ (b) (c)

Fig. 9.4. Constraint release process. The constraint on the test polymer T (thick

line) imposed by a surrounding polymer A can be released if the polymer A

moves away as shown in (b), or a new constraint can be created by an incoming
polymer D as shown in (c).

The time 7, is estimated as the time necessary for the polymer to move
the distance L: va = L*/Dy = L% Dy, ©.8)
Since L*/Dyo=D' (see eqns (8.16) and (8.27)), eqn (9.7) is written as

a 2
D, D,o( L) (9.9)

e., the rotational diffusion constant in the semidilute region becomes
smaller than that in dilute solution by a factor (a/L)%

In the above estimation, it is implicitly assumed that the tube is fixed
during the time 7,;. Actually this assumption is not correct because during
the time t,, the surrounding polymers constituting the tube will also
move a distance of the order of L, and the constraints imposed by them
will be released. At the same time, new constraints are created by
incoming rods (see Fig. 9.4). Thus the tube itself changes with correlation
time t,;. However, this effect only changes the numerical coefficients and
does not change the functional form in the result of eqn (9.9) because the
characteristic time and the step length associated with this process are
again 7, and £.! (Note that this situation is entirely different from that of
the flexible polymers, for which the release of tube constraints has
negligible effect if the polymer is sufficiently long.)

9.2.4 Estimation of the tube radius and the rotational diffusion constant

To complete the analysis, we express the tube radius a in terms of v and
L. A crude estimation of a is done as follows. We consider a tube of
radius r around the test polymer and calculate the average number N(r)
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(@) ©)

Fig. 9.5. (a) Tube enveloping the test polymer (thick line). (b) The polymers in

the direction @’ intersect the area AS if their centres of mass are in the region

shown here. The volume of this region is ASL |u’ - 5|, where s is the unit vector
normal to the region AS.

of the surrounding polymers which intersect this tube. If r=ga, the
number N(r) will be of order unity. Hence a is estimated by

N(a)=1. (9.10)

To calculate N(r), we consider a small region of area AS on the
surface, and count the number AN(r) of surrounding polymers which
penetrate this area (see Fig. 9.5). Let s be a unit vector normal to this
region. As shown in Fig. 9.5, the surrounding polymers in the direction
u' intersect the region AS if their centres of mass are in the region of
volume LAS |u’ - s|. Hence

AN = j‘P,(u’)vLAS lu’ - s| du’ (9.11)

where W, (u') is the orientational distribution function of the surrounding
polymers.

First we consider that the distribution of the surrounding polymers is
isotropic. In this case AN is independent of s, and given by

AN = vLAS f d6} |cos 6| sin 6 = 1'25 AS. 9.12)
0

Summation of AN over the entire surface element gives vLS/2, (S =
2nrL being the total surface area). This is twice the number of polymers
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penetrating the tube since most polymers intersect the surface of the tube
twice. Hence N(r) is obtained as

L2
N(r)=1vLS = "”2' (9.13)

From eqns (9.10) and (9.13), it follows that
a=1/vL> (9.14)

Equation (9.14) indicates that in the semidilute region 1/L* << v < 1/bL?,
the tube radius @ is much smaller than L, but much larger than b.
Substituting eqn (9.14) into eqn (9.9) we finally get

D, =D,o(vL*)™ (9.15)

Thus D, is smaller than D, by a factor (vL?) ™2
In the above estimation we neglected the numerical factor entirely. To
write eqn (9.15) as an equality, we have to put in a numerical factor B

D, =BD,(vL*)™ (9.16)

The precise value of the numerical factor £ is not known. Various data
suggest that 8 is rather large (of the order of 10°) as will be shown later in
comparisons with experiments.

If the distribution of the surrounding polymers is not isotropic, the
tube radius becomes a function of u, and so does the rotational diffusion
constant, which will be written as D,(#). This is calculated in Appendix
9.1,

D,(u) = D,[% fdu' |u X u’| lI‘,,(u’)] - (9.17)

where D, is the rotational diffusion constant in the isotropic environment,
eqn (9.16).

9.3 Brownian motion in equilibrium

9.3.1 Time correlation functions

Having obtained the translational and rotational diffusion constants, we
can write down a kinetic equation for the probability W(R, u;¢) that a
given test polymer is in the configuration (R, u) at time ¢. %

ow 2]

2
§=D"(u.§) Y+R-D, RV (9.18)

t D, must be placed between the two rotational operator R’s because (i) the equilibrium
distribution of ¥ must be isotropic and (ii) the integral of 3¥/3t over & and R must vanish.



BROWNIAN MOTION IN EQUILIBRIUM 331

Equation (9.18) describes the Brownian motion of a test polymer in a
given environment whose distribution is specified by W,(u). In the
isotropic solution, D, becomes a constant given by eqn (9.16). The
conditional probability G(R, u, R’, u'; t) that the test polymer which was
in the configuration (R’, u') at time ¢ =0 is in the configuration (R, u) at
time ¢ satisfies

oG 3 \?

Zr=Dy(u=) G+DaG. 9.19)
Since eqn (9.19) has the same form as eqn (8.46), the time correlation
functions for the test polymer are immediately obtained from the result
of Section 8.4.

(i) Translational motion.
The mean square displacement of the centre of mass is given by

((R(t) — R(0))*) = 2Dyt =2Djt. (9.20)
Thus the diffusion constant Dg; is

Do = lim 2 (R() ~ R(0))") = 3Djo. 9.21)

Hence the ratio between Dg; and D, the diffusion constant in dilute
solution, is given by

D  Dp 1

Dgo Dyo+2D,, 2° ©-2)
Note that in the rodlike polymers, the entanglement does not change the
molecular weight dependence of Dg. This is in contrast to the result for
flexible polymers, in which the molecular weight dependence changes
from Doo«M_v to DGmM_z.

(i) Rotational motion
The correlation function of u(¢) is calculated as
(u(t) - u(0)) = exp(—2D,t) (9.23)

Thus the rotational relaxation time 7, = 1/2D, is larger than that in dilute
solution by

t,/7,9=(vL?)?/B. ©(9.24)
This shows a strong entanglement effect.

It must be mentioned that in eqns (9.21) and (9.23) we have neglected
the motion inside the tube. As in the case of flexible polymers, the tube
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constraint is ineffective in a very short time-scale, so that

) ((R(t) — R(0))*) = 6Dt (9.25)
an

(u(®) - u(0)) = exp(=2Dyot). (9.26)
These equations hold if the time-scale is less than

a® &
Te=—— =—, 9.27
D Dy ¢-27)
In Section 9.6, we shall show how to describe both short-time (¢ < 7,) and
long-time (¢ > 7.) behaviour.

9.3.2 Dynamic light scattering

Now we shall consider the dynamic light scattering in semidilute solution.
In general the light scattering from polymer solutions of finite concentra-
tions includes both the intramolecular and the intermolecular inter-
ferences. In the semidilute regime, however, even though the average
distance between the polymers is smaller than the polymer size, the
intermolecular interference is negligible because there is no correlation
between the configurations of different polymers. Therefore the dynamic
structure factor is again given by eqn (8.59)

a(k, 1) = f du f du’(sm(K : “))(Sm(x ; "'))G,,(u, u's ). (') (9.28)

K-u K-u
where
K=kL/2 (9.29)
and
5}
o Gi(u, u';t) = (D,R* - Dy(k - u))Gi(u, u'; t). (9.30)

The distinction between the dilute and semidilute regimes is in the
magnitude of the ratio between the translational term and the rotational
term in the equation for the Green function Gy (u, #’; t). Let r be defined
by:

r = Dgk?*/D,. (9.31)
In dilute solutions, r is given by
e = Dookz/D,o = (kL)2 (9- 32)

which is usually of the order of unity. In the semidilute regime, on the
other hand, r can be quite large because

r = Dgk?/ D, = (KL)*(vL?)?>> (kL)* for vL*>>1. (9.33)
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To see the characteristic feature of the semidilute regime, let us
consider the extreme case of »r = (i.e., D, = 0). Equation (9.30) is then
solved by

Gi(u, u'; 1) = 8(u — u')exp(—Dy(k - u)*t). (9.34)
Hence
st = [ () -yt
sin(|K| &) 252
jdg( |K| £ ) exp(—D"k & I). (935)

Thus the dynamical structure factor has a very broad distribution of
decay rates ranging from 0 to Dy k>

Experimental study of dynamic light scattering has been carried out by
several groups.”® Though some qualitative features of the above predic-
tions are indeed observed, clear interpretation of experimental results
has been hindered by various factors inherent in real polymers, such as
polydispersity, partial flexibility, and association. These effects will be
discussed later in connection with rotational motion. An important factor
which will not affect the rotational motion, but will be important in the
dynamic light scattering is the effect of weak, long-range repulsive force.’
As in the case of flexible polymers, such interaction tends to keep the
segment density homogeneous, and increases the decay rate of g(k, t)
with the concentration. This is indeed observed in several systems.>"’

9.4 Orientation by external fields

9.4.1 Linear regime

So far we have been considering the motion of a test polymer in an
isotropic environment. We now consider a slightly different problem:
how does the orientational distribution function of polymers change
under external fields such as a potential field U,(u) or a velocity gradient
K. Let W(u;t) be the probability that an arbitrarily chosen polymer is in
the direction u. Since each polymer feels the external field as in eqn
(8.15), the time evolution of W(u; ) can be described by**°

oV

E——Q -D [QQ‘P+—(9!U)'~P] R (uX(x-u¥P)]. (9.36)
An important point here is that in this problem, the environmental
distribution function W, is the same as W(u; ¢) itself, and D, is now given
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by
-2

15,=D,[% fdu"l‘(u’;t) |u Xu'l] . (9.37)

Equations (9.36) and (9.37) give a nonlinear equation for W. The
nonlinearity indicates a mean field character of the present theory: it
comes from identifying the distribution of the surrounding polymers with
that of the test polymer. Equation (9.36) is thus different from the usual
Smoluchowski equation, which is always linear in W.

In the linear response regime, however, the nonlinearity of the kinetic
equation is not important because there D, can be replaced by D, since
the change in D, appears only in the higher order perturbation. Therefore
the linear response function is given by the same form as that in dilute
solution except that D, is much smaller than D,. For example, consider a
rodlike polymer which has permanent dipole moment u and isotropic
polarizability (a = a, = a.). The complex polarizability and the dyna-
mic Kerr constant (per polymer) are given in the same form as eqns
(8.94) and (8.104),

u’ 1

a*(@)= 3kBT1 riog & (-38)
Ko 1
ch( ) - ? 1+ (wr)z » (9.39)
with
t=1/2D,. (9.40)

The rotational diffusion constant can be obtained from these expressions.

9.4.2 Nonlinear regime—tube dilation

The nonlinearity in the Kkinetic equation becomes important if the
external perturbation is large. In this case precise mathematical analysis
becomes quite difficult. A convenient approximation is to replace D, by
the average D,

A

D.=D,

D,[% fdu du'W(u; )¥@u';t) lux u'I]_z. (9.41)

Since D, is independent of u, the kinetic equation can be written as

2|

= R+ (au,)w] R-[ux(k-u¥)] (9.42)

kgT

This can be handled much more easily than eqn (9.36) (see refs 2 and
10). Though the approximation (9.41) is crude, it takes into account the
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Fig. 9.6. Tube dilation. The tube radius increases when the surrounding polymers
are oriented in the same direction as the test polymer.

following effect. As the polymers orient in the same direction, the
average diameter of the tube becomes larger, so that the average
rotational diffusion constant increases (see Fig. 9.6). This effect is called
the tube dilation.

The tube dilation may be seen in, for example, the relaxation of
birefringence from the highly oriented state; the initial relaxation rate is
larger than the final one. A theoretical analysis of this effect has been
done in ref. 2

9.4.3 Experimental study of the rotational diffusion constant

The rotational diffusion constant has been measured by relaxation of the
Kerr effect,”> and by dynamic light scattering.” The experimental
results are in accordance with the theoretical predictions

D,/D,o = B(VL?) 2 p~2M~*, (9.43)
or, since D,oxIn(M)/M>,
D, x p~2M~" In(M). (9.44)

However, the absolute magnitude of D, has turned out to be quite large:
experimental values of B range from 10° to 10°. Such large values of S
have also been found by a computer simulation for thin polymers (with
no thickness).'*!* Figure 9.7 shows the concentration-dependence of D,
obtained by dynamic electric birefringence and computer simulation. The
solid line indicates eqn (9.43) with B = 1.3 x 10°, which was obtained by
Hayakawa et al.’ by detailed study of the tube statistics. Though the
preciseness of this value can be questioned, it is clear that the numerical
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Fig. 9.7. Reduced rotational diffusion constant D,/D, is plotted against reduced

concentration vL’. Filled circles: the experimental results'> of dynamic electric

birefringence of poly(y-benzyl-L-glutamate, molecular weight ranging from 7.3 X

10* to 1.5 X 10°). Open circles: the result of computer simulation.'® The solid line
is the theoretical result.”” (Courtesy of Prof. Hayakawa, Tokyo University.)

factor is large and that the semidilute regime starts at rather large values
of vL’.

As has already been mentioned, precise comparison with experiments
is hindered by various effects such as polydispersity and bending of
polymers. Quantitative theory for these effects is difficult, but the
qualitative aspects have been discussed in refs 16-18

9.5 Viscoelasticity

9.5.1 Expression for the stress tensor

To discuss the viscoelastic properties in semidilute solutions, we first
consider the expression for the stress tensor. This is obtained from the
principle of virtual work as in Section 8.6.1.

In the semidilute region, the expression for the free energy is the same
as that in the dilute solution since the excluded volume effect is
negligible:

d=v f dw¥(ksT 0¥ + U,). (9.45)

The change in ¥ by instantaneous deformation d¢,g is again given by
OW=—-R-(aXode-u¥). (9.46)
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Hence the elastic stress is given by precisely the same form as eqn (8.114)
08 = 3vkp T {uattp —38,p) — v{(u X RU,) g ). (9.47)

The viscous stress is obtained from the hydrodynamic energy dissipa-
tion under a given velocity gradient. If we assume that the hydrodynamic
interaction is completely screened, this is calculated in the same manner
as in eqn (8.119):

0F = vEarKyy (Ut tatig) (9.48)
with
an,L>
Eue = "4 . (9.49)

On the other hand if we neglect the hydrodynamic screening entirely, C,
is given by the same formula as eqn (8.122)

an,L?
61In(L/b)

The actual form will be between the two. Indeed the effective medium
theory* indicates that

Cour= (9.50)

s = Number * (9.51)
It is important to note that {, is not affected as seriously as D,. This is
because the viscous stress reflects very fast motions, for which the tube
constraint is not effective.
For simplicity we proceed using eqn (9.50). The stress tensor is given in
precisely the same manner as for dilute solutions (see eqn (8.123)).

Onp = 3Vkp T (ustig —38,5) — v{(u X RU, ) ug)
+ sttrKuv(uy uvuauﬁ) + ns(xaﬁ + Kpa)- (952)

9.5.2 Linear viscoelasticity
To calculate the stress, we have to solve

v .
5 =R D RY-—R-(uxx-up). (9.53)

t It has been suggeted'®? that better agreement with some experiments can be obtained if
¢, is replaced by kpT/D,=n,L*(vL*)*/In(L/b). However, this agreement is perhaps
superficial, caused by non ideal effects of real polymers such as molecular weight
distribution, or flexibility. Theoretically there is no reason to believe that &, is given by
k,T/D,.
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In the linear viscoelastic region, D, can be replaced by D,, and the
solution is obtained in the same way as in Section 8.6.

In steady-state shear flow with shear rate k, the terms in eqn (9.52) are
given by (the case of U, =0 is being considered)
kaTK _ & (v’

10D, ~  30B8In(L/b)

x vL?

0y =3vkp T {uu,) = nsK, (9.54)

V) — 2 —
08 = vl Uit} ) k = F5vEgk = S0In(L/b) 15K, (9.55)
and
oD = k.
Hence their ratio is
0B : 00 08P = g~ Y(vL3?: (vL?): 1. (9.56)

In the semidilute regime vL’>1, the contribution of the elastic stress is
much larger than the viscous stress and the solvent stress. Thus in the
ideal semidilute region of 1/L* & v <« 1/bL?, the stress can be written as

Oap = 3k T (ugity = 38,5) = 3vkpTS,5. 9.57)

Since the characteristic time of §,; is very large (being of the order of
1/D,), the viscoelastic behaviour becomes quite pronounced in the
semidilute region.

From eqns (9.54) and (9.57), the steady-state viscosity is given by

=l VkBT (VL3)3
%% 10D, 305 “In(L/b)

which depends on the molecular weight and concentration as
n < p>M®/In(N). (9.59)

The strong molecular weight dependence of 7 is in accordance with
experiments,”* > though the precise exponent is difficult to extract
because of the nonideal effect discussed previously. The numerical factor
B can also be obtained from the viscosity and has again turned out to be
rather large ranging from 10° to 10*. (Comparison between the theoreti-
cal prediction and the experimental results are given in refs 1, 19, 24, and
26) In some cases the concentration dependence of 7 is stronger than
predicted by eqn (9.59) at higher concentration.””* One possible
explanation for this is the rod jamming effect.”
The complex viscosity defined by eqn (8.139) is calculated as

sr.\ _3PRT 7
@) =" T+ iwe

(9.58)

(9.60)
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Fig. 9.8. Real part of the complex viscosity 7'(w) of poly(y-benzyl-L-glutamate)

in m-cresole is plotted against concentration p at various frequencies (from top to

bottom, 0, 2.2, 6.6, 20, 58, 202, and 525 KHz). Here 7, is the viscosity of the pure
solvent. Reproduced from ref. 28.

with
t=1/6D,. (9.61)

Figure 9.8 shows the real part of the complex viscosity at various
frequencic‘:s.28 As the concentration increases, the viscosity at low
frequency increases sharply, while the viscosity at high frequency
increases only in proportion to the concentration. This is in accordance
with eqns (9.54) and (9.55).

9.5.3 Nonlinear viscoelasticity

Since D, becomes small in the semidilute region, the nonlinear visco-
elasticity becomes quite important. To handle the nonlinear visco-
elasticity, we need the full solution of eqn (9.53). This has been done by
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solving eqn (9.53) numerically'®* with the approximation (9.41). It turns
out that the qualitative features of the nonlinear viscoelasticity are quite
similar to those of flexible polymers, for example:

(i) Shear thinning: In the steady shear flow, the viscosity n(x), the first
normal stress coefficient W;(x), and the absolute value of the second
normal stress coefficients W,(x) {which is negative) all decrease with the
shear rate. The characteristic shear rate for the shear thinning is about
D,.

(ii) Stress overshoot: When a constant shear flow is started, the shear
stress shows overshoot if the shear rate is sufficiently high.

(iii) Elongational viscosity: The elongational viscosity first increases
slightly with the elongational rate and then decreases. These features
agree at least qualitatively with the observed behaviour.?!-2430-3

Unlike the case of flexible polymers the constitutive equation cannot
be written in a simple closed form unless we use the decoupling
approximation. Since the equation for §,; is given by the same equation
as that in dilute solution, eqns (8.149) and (9.57) give a closed equation
for Tap.

d - 1
= Oap = —6D, 0,5 + K,,08, + K, 00y + 5 Ge(Kqap + Kga)

at
- 2a,wx,,y(9(;—”+ ga,,,) (9.62)
where
G. = 3vkyT. (9.63)

The qualitative features described above can be checked by this
approxXimate constitutive equation.

9.6 Short time-scale motion

9.6.1 Chopstick model

So far we have neglected the small-scale fluctuation that the polymer
makes inside the tube. To include such motion, we consider the following
model* (see Fig. 9.9). We separate the direction of the polymer and the
direction of the tube, and consider two vectors u representing the
direction of the polymer and » the direction of the tube. The diffusion
constant of » is D,, while the diffusion constant of u is D,, since the
polymer can move freely inside the tube. The condition that u is
fluctuating inside the tube is represented by the coupling potential
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Fig. 9.9. The chopstick model.

between u and n.

Uu—n)= I;’%‘ (u —n). (9.64)

Equation (9.64) guarantees that at equilibrium, the deviation between u

and n is of order ¢:
V| Ln)z)
f du(u —n) exp( 762

famesn(-£527)

The kinetic equation is now given for the two-vector distribution function
O(u, n;t) as

ap P
E =DR, - (Q,.‘p =+ kB—TQ,, U (u— B))

((u—-n)*) =

R

262 (9.65)

+ DR, - (92,,4) + ki’ng,(U.,(u _m)+ U,_.(u))) (9.66)

where R, and R, are written as

3

R,=uX P R,=nX

and for simplicity the tube dilation is neglected.

The model described by eqn (9.66) is easy to visualize: the two vectors

u and m move together like a pair of chopsticks. The external field,

represented by the potential U,(u), affects the rapidly moving vector u,

which drags the slowly moving vector n through the coupling potential
U.u—n).

- (9.67)
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An important property of the kinetic equation (9.66) is that at
equilibrium, the distribution of u is not affected by the vector n. In fact,
the equilibrium solution of eqn (9.66) is

(peq(ll, n) x exp[—(U.(u) + U.(u —n))/kg T). (9.68)
Hence the equilibrium distribution of & is

Y (u)= j dn®.,(u, n) xexp[— U (u)/ksT] (9.69)

which is the same as the isolated polymer without the tube constraint.
This must be so since the entanglement interaction does not affect the
static properties.

9.6.2 Local equilibrium approximation

Although the kinetic equation (9.66) is conceptually simple, it is not
easily handled mathematically. However, if we focus our attention on
slow motion, a simple treatment is possible.

If the external field changes slowly compared to 7, =&%/D,, the
distribution of the vector u can be assumed to be in a local equilibrium
for given n. Then ®(u, n; f) can be written as

D(u, n; 1) ="V(n; 1)y.o(u, n) (9.70)

where y,, represents the local equilibrium distribution of u for given a,
ie.,

Uu—n)+U.(u)
~ exp[ - kpT ] 0.1
Veall W)= U~ m) + Uw) o7
Jouexp| - ==
B _Uu—n)+U(u)— U.(n)
= exp[ %o ] . (9.72)
He
* - _ Ufu—n)+ U(u)
O.(n)=—kpTIn j du exp[ - ot ] (9.73)
and y.q(#, ») is normalized such that
J' duy.(u, n)=1. (9.74)

To determine W(n;) we substitute eqn (9.70) into eqn (9.66). The
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result is
v I g
o Vo= DB [y + ¥Ry AR U - w)|
_ Py
=D Yo BT+ VS B0 (| 9.75)
Integrating this over &, we have
a:_ D%, - [92 Y (93 g (u))w] (9.76)

This equation corresponds to eqn (9.36). The difference between eqn
(9.36) and (9.76) is in the potential U,: the potential for the tube U,(n) is
not equal to U,(n). To the lowest order in £, we can show (see Appendix
9.1I)

U.(n) = U(u)+%ez[9!20(n)— 7(% U(n))’] (9.77)

Similarly the average of an arbitrary function of u is given by (see
Appendix 9.II).

(A@)) = [ dn [aud (0 B(a; ey, n)

- j dnA(n)B(n; 1), 9.78)

where

Atw) = [ uA@)y.o(s, »)

= A) +1¢| BA) - 7 (RaA®) - (RLUW)| + O,
(9.79)

Equations (9.77) and (9.79) indicate that the formulation given in
Sections 9.2 and 9.3 neglects terms of the order of £

9.6.3 Example

As an example, consider the case when the polymer has a permanent
dipole moment p along its axis, but whose polarizability is isotropic
(ay = a,). The potential of such a polymer in an electric field E in the z
direction is

Ufu)=—uEu,. (9.80)
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Hence the effective potential for the fube calculated with eqn (9.77) is

U,(n)= —uEn, + %ez[ZuEn, T Ez(l nz)]
B
2 wet o,
=—(1- . .81
(1— e°)uEn, + 2%, TE (n2-1) (9.81)

Equation (9.81) indicates that the fube has not only the effective dipole
moment

Heuve = (1 — €%)u (9.82)
but also the anisotropic polarizability
202
ACye = — :B—T (9.83)

Since Aa <0, this effect tends to orient the tube perpendicular to the
electric field.
Equation (9.79) gives

(u) = (1 - €%)(n,) - e’,j%(ni— 1) 9.84)
2e*uE
kT

The average of the quantities on the right-hand sides of eqns (9.84) and
(9.85) are calculatd from

v R,U.

— + .

% DR, - [9! g koT 111] (9.86)
The calculation is tedious, but straightforward. Here we only quote the
results.>* The complex polarizability is given by

(ui—u?)=(1-3e>)(n;=-n2) + (n(1=nZ+nk)). (9.85)

2
o) = (1 2¢® 2) ) _
(w)= W, T\1+ 1wt+ 2¢*) with t=1/2D,, (9.87)
and the dynamic Kerr constant by
Ko ( 1+ ¢ 2) .
Ks(w) = 17 (o) (@7) €] with ©=1/2D,. (9.88)

Equation (9.88) shows that K, becomes negative for @ > 1/(er). The

negative birefringence comes from the negative anisotropic polarizability

of the tube, and has indeed been observed by Mori et al.’> The

1m rtance of the short time-scale motion was also noted by Moscicki et
® for the dielectric relaxation.
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The local equilibrium approximation breaks down if the frequency of
the external field becomes comparable with the characteristic time of the
fluctuation 7, =¢e?/D,,. The motion of the polymer in such a short
time-scale can be treated by eqn (9.66)* or a rotation model limited in a
cone-like region.”® Both treatments gives qualitatively similar results:
e.g., a*(w) and K,.(w) approach zero as @ — o with the relaxation time
7,. Recent studies have been reviewed by Moscicki.”’

Appendix 9.1 Tube dilation by orientational ordering

Here we calculate the rotational diffusion constant for the case when the
orientational distribution of the surrounding polymer is not isotropic. The
number N(r), which is given by the sum of eqn (9.11) over the entire
surface, is written as

N(r)=2vSL((|u’ - s|)ur)s (9.L1)

where (...), stands for the average over the distribution of the
surrounding polymer,

(.. V= fdu'ql,(u'). . (9.1.2)

and the average (...), means the average over the surface of the tube

1
(...),=§fds... 9.1.3)

First we calculate (|u’-s|),. For a slender tube, the surface area is
mostly on the long side of the tube and s is perpendicular to u, then
|s - u’| is written as

s u'|=|s X (uXxu)|=|uXu||siny| (9.1.9)

where vy is the angle between s and u X u’. Since the distribution of y is
uniform between 0 to 2x

2n
=l xw! [ 1sin vl =2 lu X &’
(|s u|),—|u><u|!2n|smw|—n|u><u|. (9.1.5)
From eqns (9.1.1) and (9.1.5)
N(r) =-Y-f?l-' (|luXxu'l), =;1;v2.7trL2 . % fdu' luXu'| ¥,(u') (9.1.6)

which gives s )
b,=p|2 [au x| ‘l’,(u’)] . (9.17)
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The factor 4/ is put so that eqn (9.1.7) agrees with eqn (9.16) in the case
of an isotropic distribution.

Appendix 9.I1 Effective potential for the tube
Let (...), be defined by

(A(u)), = fdu exp( _u)z)A(u)/jdu exp( 2_;)2). (9.11.1)

We evaluate (A(u)), for small & To that end we expand A(u) with
respect to the small vector v =u —n

A(u) = A(n) + vy —— A(n) + v,

an. A(n) (9.11.2)

2]
"8 Bn,, on,
and evaluate (A(u)), as

(A= A@) + (v2), 50 AW +Xvatp)u 57 Alw). O

By symmetry, (v, ), is written as

(Va)u=Cnq. (9.11.4)

To calculate the constant C, we multiply both sides of eqn (9.11.4) by n,
and sum over «. The result is

C=(v-n),=(u-n-1),. (9.11.5)
Let 6 be the angle between & and n, then Cis

- []:dO sin @(cos 6 — l)exp( = '::’5 0)]

<[ [sosmoemp(- 2220

0

]

—

-1

= — dex exp(—x/e’)][]dx exp(—X/Ez)] (9.11.6)

0

where x =1 — cos 0. Since the integrand in eqn (9.I1.6) decreases quickly
with x, the upper limit of the integral can be replaced by infinity. Hence

C= —[Idxx exp(—x/ez)][jdx exp(—x/t:z)]~1 =—¢2, (9.1.7)
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v (VaYu=—€",. (9.11.8)
Likewise, it can be shown
(VaVp)u = €%(8ap — nahig). (9.11.9)
Thus
3 € 3 38
— 2, = =z - —
(A@))a = AW) = o 0= AW) + 5 (Sup = naty) 5 -5 - A@).
(9.11.10)

By direct calculation, one can prove that
(A(u))y = A(n) + 32R2A(n). (9.11.11)
Now let us calculate the effective potential for the tube. Using the
definition in eqn (9.73), U.(n) is written as
U,(n) = —In{exp(—U,(#))), + terms independent of n. (9.11.12)

(Here kT is put equal to unity for simplicity.) Using the formula
(9.11.11), we have

(exp(— Ue(“))>u = (1 + %ezﬁi)exp(— Ue("))
= exp(—U.(n))(1 +3&’[-RU.(n) + (R, - U.(n))*)).
(9.11.13)
Hence
U.(n) = —In{exp(—U.(v))).
= U.(n) + 3&’[RLU.(n) — (R, U.(n))’] (9.11.14)

which is eqn (9.77).
Likewise A(n) can be calculated as

[ du exp(- Ui ~ m) - viwpIA@W)
A(n)=

[ au exp(- .- m) - v,

- (CXp[— Ue(“)]A(u) >n
(exp[-Ue(u)])u

_ (1 +3e2R) A(m)exp(~U,(n)
(1+3e2R2)exp(—U,(n))

= A(n) + 1e7[RA(n) - 2(R,A(n)) - (R, U.(n))). (9.11.15)
This is eqn (9.79).
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10

CONCENTRATED SOLUTIONS OF RIGID
RODLIKE POLYMERS

10.1 Introduction

As mentioned in Section 9.1, in a solution of rodlike polymers of length
L and diameter b, the excluded volume effect becomes important in the
concentration regime

vbL?= 1. (10.1)

The most spectacular aspect in such a solution is that above a certain
concentration, the polymers spontaneously align in a certain direction,
and the solution becomes anisotropic without any external fields. Such a
solution is called a liquid crystal.

The term ‘liquid crystal’ is generally used to represent the state of
matter which has the fluidity of a liquid and the molecular ordering of a
crystal. Historically, liquid crystals were first found for low molecular
weight materials, and a great deal of work has been done for those
materials, much of which is summarized in monographs.'?

Polymeric liquid crystals, on the other hand, have not attracted much
attention until recently, when the possibility of spinning high strength
fibres from liquid crystalline state stimulated rapid growth of interest in
both technological and scientific research. This can be seen in various
books published recently.> At this stage our understanding of polymeric
liquid crystals is far less complete than that of low molecular weight
materials. Nevertheless it is possible to discuss some characteristic aspects
of the material as a natural extension of the theory given in previous
chapters.

The type of liquid crystal which will be discussed in this chapter is
called ‘nematic’. In this phase the directions of the molecules are
ordered, being almost parallel to each other, while their positional
arrangement is random, as in ordinary liquids (see Fig. 9.1).

On the macroscopic level, nematics have uniaxial symmetry around a
certain direction denoted by a unit vector n called the director. There is
reflection symmetry with respect to the plane normal to n (thus the state
designated by n is the same as that designated by —n).

On the microscopic level, nematics are characterized by the fact that
the equilibrium distribution function W(u) for the molecular direction u is
not isotropic. The anisotropy is conveniently represented by the tensor

Sap = (Ustts —304p) (10.2)
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which is zero in the isotropic phase, but nonzero in the nematic phase.
(Notice that this is the simplest quantity representing the anisotropy of
W(u) since the vector average (u) vanishes identically due to the
reflection symmetry.) The tensor S,z is symmetric (S,s =Sg,) and
traceless (S,o =0). At equilibrium it depends only on the vector n. The
most general form of such a tensor is

where S is a certain scalar. From eqns (10.2) and (10.3) S can be written
as

S =3n,npS.s =3((m-m)’—1). (10.4)

The right-hand side takes the value unity when all the polymers are
parallel to », and zero when their direction is completely random. Thus §
represents how perfectly the polymers are oriented along » and is called
the orientational order parameter.

If there is no external field, the director » in nematics is entirely
arbitrary. Thus the equilibrium state of nematics is not unique and can be
changed by infinitesimal perturbation. This property, generally called
‘broken symmetry’®’ in statistical mechanics, necessitates a special
treatment in the mathematical handling of the kinetic equation, and
introduces a new type of constitutive equation, unique to the ordered
fluid.

10.2 The phase transition of rigid rods

10.2.1 Free energy for a given orientational distribution function

First we shall study why rodlike polymers form a nematic phase above a
certain concentration. The statistical mechanical theory for the rigid
rodlike molecules was first given by Onsager® and substantial develop-
ment was made by Flory,” who accounted for various factors in real
polymers in the framework of the lattice theory. Here we shall describe
the theory following the reasoning of Onsager since it is more con-
veniently extendable to dynamics.

Consider N rodlike polymers in a volume V. Let R; and u; (i=
1,2,..., N) be the position and the direction of the i-th polymer. The
probability distribution function for the whole system is given by

P((R,, w})=exp(=3 u(i, )/kaT) (10.5)

where u(i, j) is the interaction energy between the polymers in the
configurations (R;, u;) and (R;, u;).
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To study the orientational distribution function at equilibrium, we
calculate the partition function Z[W] for given orientational distribution
function ¥; Z[W] is given by

219) =~ [Maurar, exp(- 3 uti DkeT) (10,6

i>j

where the subscript W under the integral symbol indicates that the
integration should be done under the constraint that the orientational
distribution of polymers is W. To take into account such a constraint, we
divide the surface of the sphere |u| =1 into small cells of areas A, and
evaluate the integral under the condition that the number of polymers
which are in the a-th cell is

n,=N¥(u,)A. (10.7)
Obviously
2 n,=N=vV. (10.8)
If we define
(...)¢=|I1dulldR;... /| 1du]l dR,, (10.9)
o= [nnar.../|
eqn (10.6) is written as
Z[¥] = Z[¥)Z,[¥] (10.10)
with
1
Z[¥]=— | 1 du; IT dR,; 10.11
N! l U; ( )
and
Z,[¥] = <exp( —g_ u(i, )/ ks T»W. (10.12)

The evaluation of Z)[W] is easy. Since the number of ways of
distributing N polymers into the cells is N!/[] n,!, and each integral over
R, and u; gives V and A respectively

_1 NI
N!IIn,!

(VA (10.13)

The free energy (per unit volume) corresponding to this partition
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function is
A %)= -2 2= ~ 22 [N1n(vA) - 3 ny(in(n) - D)
- - % k,T[ln(V/N) +1-3 W)A ln(‘P(ua))]
= kaT[ln v—1+ 2 W(u,)A ln(‘l’(lla))] , (10.14)

or replacing the summation by an integral:

A [¥] = kaT[ln v—-1+ I du¥(u)ln ‘P(u)] . (10.15)

To evaluate Z,[¥W], we assume that the collisions between the polymers
occur independently of each other and therefore approximate eqn (10.12)
by

(T exp-u(i, DiksT)) =TT (exp(-uti, VkaT))e.  (1016)

i>j i>j

This approximation is justified if the concentration of the polymers is low
enough. Systematic improvement of this approximation can be done by
the virial expansion of the free energy.'® However, for polymers of long
aspect ratio (L/b>>1), the higher order terms are not needed because
the transition is shown to occur at very low concentration.

Each term in the product of the right-hand side of eqn (10.16) gives

(exp(—u(i, j)lksT))w = 715 f du; du, dR, dR
x exp(—u(i, j)/ks T)%(u)¥(w;). (10.17)
The integrand depends only on R, — R, so that
(exp(=uli, j)/ksT))w = ‘—1, f du; du; dR,
x exp(—u(uy, Riy y, 0)/knT)P ()% (u;)
—1- ‘1, f du; duB(u;, w) () P(w)  (10.18)

where
B(u, u') = f dR[1 - exp(—u(u, R, u’, 0)/ksT)].  (10.19)
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Equation (10.12) thus becomes

N(N-1)12
] (10.20)

Z,[¥] = [l —%,fdu du'B(u, u')¥(u)¥(u’)
In the limit of V — o with v = N/V finite, this becomes
Z,[¥]= exP[ - -‘%—f fdu du’B(u, u’)‘P(u)‘P(u')] . (10.21)

The free energy corresponding to Z, is

A (W] = — k—:,zln Z,=3V?ksT Idu du'f(u, v )¥(u)¥(u’'). (10.22)

The total free energy of the system is thus given by
AP (u)] = Ao[¥(w)] + A,[¥(u)]

= kaT[ln v—1+ fdu‘l’(u)ln W(u)

+1v f du f du'¥(u)¥(u')p(u, u')]. (10.23)

For rigid, rodlike polymers, B(u, u’) is given by (see Fig. 9.2)
B(u, u')=2bL* |luXu'|, (10.24)

so that B(u, u') has a minimum when u is parallel or antiparallel to u’.
Thus o/,[W] decreases as the polymers orient in the same direction. This
causes the nematic phase when the effect of the excluded volume
becomes strong. Notice that without the excluded volume interaction, the
equilibrium state is always isotropic even though the topological and
hence dynamical effects still exist.

10.2.2 Equilibrium distribution

The equilibrium distribution is determined by the condition that & is
minimum for all variations of W. Since W(u) satisfies the normalization
condition,

f du¥(u) =1 (10.25)

the minimum is found by introducing a Lagrangian multiplier A and
solving
A

o | ) - 1 [aww(@) | =0 (10.26)
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which gives
In W(u)+ v j du'¥(u’')B(u, u') = constant. (10.27)

The constant is determined from the condition (10.25). It is convenient to
write eqn (10.27) in the following form

W(u) = % exp[ - Qﬁ%ﬁ] , (10.28)

with U defined by

Uit [¥]) = vkp T f du'B(u, u')(u’) (10.29)
and
z= f du exp[ - W] (10.30)

Equation (10.28) indicates that the orientational distribution of a polymer
at equilibrium is a Boltzmann distribution under the potential U, Thus
Ui is regarded as a mean field potential acting on the polymer.

The nonlinear integral equation (10.28) cannot be solved analytically.
Onsager assumed that the equilibrium distribution has the following
form:

Y(u)= cosh(au * n) (10.31)

47 sinh o
where m is an arbitrary unit vector, and a is a parameter to be
determined from the condition that &/ be minimized. Equation (10.31)
represents a state in which the polymers are oriented toward +mn. The
parameter a represents the degree of ordering: o =0 corresponds to the
isotropic state, and a = « the completely ordered state.

If eqn (10.31) is substituted into eqn (10.23), & is expressed as a
function of « and v. The result is schematically shown in Fig. 10.1. If v is
small, #(a, v) has only one minimum at « =0, which corresponds to
the isotropic state. If v exceeds a certain critical value v{, another
minimum appears at positive a, which corresponds to the nematic state.
If v exceeds another critical value v;, the minimum at a = 0 disappears,
and there is only one minimum at a positive value of a.

In Fig. 10.2a, the values of the minima (or local minima) of & are
plotted as a function of v. Between v{ and v3, &/(a, v) has double
values, and the thermodynamically favourable state is the one with a lower
value of #(a, v). It is important to note that the minimum of #(a, v)
does not immediately indicate an equilibrium state because the free
energy can be even more lowered by macroscopic phase separation.
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o (a,v)—(0,v) 4

<

Fig. 10.1. Free energy as a function of the order parameter a at various
concentrations.

‘ A (@, v) ? o @,V )

Vg‘

A

(@) (b)

Fig. 10.2. (a) Free energy as a function of concentration. For v{ <v <vj3, the

values of the two local minima are plotted. (b) Graphical meaning of eqn (10.34).

If a system of concentration v is separated into two phases of concentration v,

and v,, the total free energy changes by Asf shown in the figure. (In this case

Asf <0). The total free energy becomes minimum when the line PQ coincides
with AB which is tangent to the curve at both points A and B.
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Suppose that a system of concentration v and volume V is separated
into two phases of concentration v, and v, with volumes V; and V,
respectively, then the total free energy is given by

Ao = V1 + VoA, (10.32)
The values of V; and V, are determined from the condition
V1V1 + Vz‘,z =vV and V1 + V2 =V. (10. 33)

From eqns (10.32) and (10.33), it follows that

Vo—V vV—W
Vs, +
V2 — ¥V, V2—V;

Ao =

Vst,. (10.34)

As explained in Fig. 10.2b, in the concentration region between v, and
vg the free energy becomes minimum if the system is separated into two
phases; one is the isotropic phase of concentration v, and the other is the
nematic phase of concentration vz. Therefore it is concluded that:

(i) If v <wv,, the solution is isotropic.

(ii) If v4<v<vp, phase separation takes place, i.e., the isotropic
phase of concentration v, coexists with the nematic phase of concentra-
tion vp.

(iii) If vz <v, the solution becomes nematic.

Notice that v4, vg, v{, and v3 are all proportional to 1/bL?; the
difference among them being only in the numerical factor. In the
subsequent discussion we shall use v5 (= the concentration above which
the isotropic phase becomes unstable) as the characteristic concentration
of the phase transition and write v3 simply as v*.

The values of v,4, vz, and v* are obtained by numerical calculation:

4.25 5.72 16 5.1
Va=317 Vg = BL2 and v*= L2 bLZ (10.35)
A more elaborate variational method gives
419 5.3 . 4.44
Vy= N Vg = bLZ and v*= bLZ (10.36)

Note that for a slender rod (L >>b), the volume fraction ¢ = v(xb2L)/4
at these concentration is quite low. For example
e_ oL _ b
pr=v =4 (10.37)

which decreases as M~'. This agrees, at least qualitatively, with
experiment. '
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The advantage of Onsager’s theory is that it becomes exact in the limit
of L/b— . On the other hand, real polymers suffer from other effects
which are not included in Onsager’s theory, such as an attractive energy,
flexibility of the chain, and molecular weight distribution. These effects
are discussed in refs 12 and 13, and a comparison between the improved
theory and the experimental results is made in ref. 12.

10.3 The kinetic equation

10.3.1 Dynamical mean field theory

Having discussed the static properties, we shall now consider the
dynamics of the concentrated solution. A natural generalization of the
static mean field theory to dynamics is to assume’*® that each molecule
does Brownian motion under the mean field potential U, For rigid
rodlike polymers U, is given by

U () = vksT f du'B(u, u')P(u'; 1). (10.38)
Introducing this into the kinetic equation (9.42), we have'’
¥
C_b- [sw — R(Une+ U,)] —R-(xK-u¥). (10.39)
ot kzT

(Here the preaveraging approximation (9.41) is used.)

Equations (10.38) and (10.39) give a nonlinear integro-differential
equation for W, and its mathematical handling is not easy. A guidance
of how to proceed is obtained from the phenomenological theory in
nematics. De Gennes"'® showed that the dynamics of nematics is essenti-
ally described by the Landau theory of phase transition and proposed
a phenomenological nonlinear equation fotr the order parameter tensor

Sop T F s -y 3A
ot P 3S,p
Here L is a phenomenological kinetic coefficient and A is a free energy.

Near the transition point, S, is small so that A can be expanded with
respect to S, as in the series

A=a,Ti(S-8)+a;Ti(S-8-8)+a,Tr(S-S-8-8)+ai(Tr(S-8))
(10.41)

(10.40)

where a,, . . ., a4 are constants.

t Since the S,4 satisfy the constraint §,, =0, s/ must be supplemented by a term —AS,,
with a Lagrangian multiplier A, and eqn (10.40) must read
3 oA
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We thus aim at deriving a closed equation for S,z from eqn (10.39).
For simplicity, we first consider the case when there is no external field
(U.=0, x=0).

First we approximate f(u, u’), which is a decreasing function of
|- w’|, ast

B(u, u') = const — B,bL*(u - u')? (10.42)

where B, is a numerical constant.
Substitution of eqn (10.42) into eqn (10.38) gives

U, = const —B,vbL*k g Tu,ug (U g ). (10.43)
We shall write this in the following form:
U, = const = 3Uk Tu,upS,s (10.44)
where U is a parameter proportional to vbL2 Using the approximation
(10.44), we write eqn (10.39) as

v

o DR - [RY —YR(BUS,pu,ug)). (10.45)
We now use the same procedure as in Section 8.7, i.e., we multiply both
sides of eqn (10.45) by (u.us —30,.5) and integrate over u. The result,

after integration by parts, is

iSLrﬁ = _6Drsaﬂ + 61-),U[Sa,,, <u” uﬂ) - S“v (ua'uﬁuuuv )]‘ (10‘46)

ot
Using the decoupling approximation
Suv (W u usug) =8, (w,u, ) {Ustg), (10.47)
we finally get
3
gt Sa,ﬂ = Fap(S) (10.48)

where
Fop = =65, (1-5)Sup = U(Sos — 2253 + US,pS% |- (10.49)

Equations (10.48) and (10.49) give a special form of the Landau-de
Gennes theory equation (10.40) with the phenomenological parameters

1 This type of interaction has been used by Maier and Saupe'® in the theory of the phase
transition of low-molecular-weight nematics. An advantage of this interaction is that the
nonlinear integral eqn (10.28) can be solved exactly (see ref. 1, p. 43).
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determined as

- U
L=6D,, a2=%(1—l§j), as= —%J, a,=0, a£=z.
(10.50)
Though the validity of the Landau-de Gennes theory is usually limited
only to the weakly ordered state, eqn (10.49) can also be used for the
highly ordered state. Indeed, as will be shown later, the order parameter
S given by eqn (10.49) remains in the physical range (—1/2<S <1) over
the entire range of U. (This is a consequence of the fact that the
decoupling approximation (10.47) becomes correct in the highly oriented
state.)
It must be noted that D, in eqn (10.49) will depend on S,; because of
the tube dilation. To include the effect qualitatively, we use an
approximation similar to eqn (10.42):

(&)m - J du du"W(u)W(u') |u X u'| = B, — BsSapSap  (10.51)

D
where 8, and f; are certain numerical constants, chosen so that both
sides of eqn (10.51) agree with each other in the isotropic state
(¥Y(u)=1/4n, S,s=0) and in the completely ordered state (W(u)=
O(u —n), S,p =n,ng — 6,5/3). This gives

=1 and B;=3. (10.52)
Hence )
D, = D,[1-3S.55.5]>. (10.53)

Equation (10.48) with eqns (10.49) and (10.53) give a closed equation
for S,p."” It should be emphasized that this kinetic equation holds in
both isotropic and nematic phases. We shall now study the consequence
of this equation.

10.3.2 Relaxation of the order parameter

Suppose that for ¢ <0, the polymers are oriented by an external field. If
the field is switched off at =0, the polymers will return to the
equilibrium state. We shall first study this relaxation process using the
kinetic equation (10.48).

Let n be the direction towards which the polymers have been oriented
by the external field. This direction will coincide with the director if the
system is in the nematic phase. Since the system will retain uniaxial
symmetry around n during the relaxation process, the order parameter
tensor is written as

S.5() = S(t)(nuns —384p). (10.54)
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Substituting eqn (10.54) into eqn (10.48) we get

S _ A _l_/) U, 3]
= 60,[(1 3)5 -3 52 +3Us (10.55)
or

s .3

= =—6D,<A(S, U) (10.56)
where

10 VU U

A(S,U)—2(1 3)5 55+ St (10.57)

Since D, >0, eqn (10.56) indicates that the change in S occurs in the

direction of decreasing A(S, U). In particular, the equilibrium value of S

is determined from the minimum of A(S, U). Thus A(S, U) plays the role

of the free energy. Indeed, as shown in Fig. 10.3, A(S, U) behaves

similarly to &f(e, v) (S and U corresponding to « and v respectively).
Standard analysis of eqn (10.57) shows:

(i) For U< U7 =8/3, A has only one minimum at S =0, so that the
system finally becomes isotropic, whatever its initial state.

(ii)) For U <U<U* =3, there are two local minima, one at S =0
and the other at

1 3 8 \2
Seq—zﬁ-z(l—m) . (10.58)

ASU) §

U'<U

~—

\/ ;

Fig. 10.3. Free energy of A(S, U) plotted against S for various values of U.
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Fig. 10.4. The equilibrium order parameter S, plotted against v/v*.

In this case the system can become either an isotropic state or a nematic
state depending on the initial value of §.

(iii) For U> U*, the point S =0 becomes unstable and the system
always approaches the nematic state.

Though this analysis does not tell where phase separation takes place
(since the system is assumed to be homogeneous in this treatment), the
general behaviour of the phase transition is described by the approximate
kinetic equation (10.48).

Equation (10.58) gives the equilibrium order parameter S., as a
function of the concentration. Since

v U U
U3 (10.59)
eqn (10.58) is rewritten as
1 3 8v*\12
ch—z'i‘z(l— 9V) . (10.60)

This is plotted in Fig. 10.4. The equilibrium order parameter starts at 1/4
at v =(8/9)v* and gradually approaches 1 with increasing concentration.

10.4 Pretransitional phenomena

10.4.1 Introduction

In concentrated solutions, the excluded volume interaction tends to align
the polymers in the same direction, and gives rise to the nematic phase if
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the effect is sufficiently strong. The same effect exists also in the isotropic
region, where, though the macroscopic ordering is not achieved, the
interaction tends to align the polymers on a microscopic scale. This
‘short-range ordering’ increases as the concentration increases, and
causes various anomalies in the physical properties of isotropic solutions
near the transition point. It is called the pretransitional effect.’!®

A simple example of the pretransitional effect is seen in the problem
discussed in the previous section. Suppose that the external field is weak,
then § is small in the isotropic phase, so that eqn (10.55) can be
approximated by

N S
5= —6D,(1 -3)5= 3 (10.61)

where
T= 1 o 1 (10.62)
6D,(1-U/3) 1—viv*’ '

Thus the relaxation time diverges as the concentration approaches v*. In
reality, the true divergence cannot be observed because the phase
separation takes place before we reach the concentration v*. However,
an indication of the divergence is expected to appear near the phase
separation concentration v,.

Here we shall give two examples of the pretransitional phenomena.
Though a rigorous calculation is possible using the kinetic equation
(10.39), we shall use the approximate kinetic equation (10.48) for
convenience of demonstration.

10.4.2 Magnetic birefringence

A magnetic field can orient the polymer and thus cause birefringence.
According to eqn (8.83), the anisotropic part of the refractive index £, is
written as

Let x; (and x.) be the magnetic susceptibility of the polymer parallel

(and perpendicular) to the magnetic field. In the presence of the
magnetic field H, such a polymer feels the potential (see eqn (8.81))

= —3x.(u-H)’ (10.64)
where x, = x; — x.. The kinetic equation is thus
- ’ )]
i DR - [Q‘I’ ‘I’Q( US,plqlip +2k T(H u) (10.65)
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which gives

A

=2 = ~6D,Syp + 6D, U, (huitp) = Suv (atipttiey )]

’x"[H H,(ugu, ) + HgH, (u,u, ) —2H,H, (u,ugu,u,)). (10.66)

The decoupling approximation (10.47) and

(uqugu,u, )H,H, = (u ug ) {(u,u,)H,H, (10.67)
gives the following kinetic equation for S,g,
3
3 S = F.5(8) + M, 4(S) (10.68)

where Fa,,,(S) is given by eqn (10.49) and

M,z = T T[Z(H Hy —3H?6,5) —3H?S,p + H, H,Sp, + HgH,S,,
—28,5H,H,S,, — 25,48, H,H,]. (10.69)
For a weak magnetic field, eqn (10.68) gives, to the lowest order of H,
3 Sep 2D,
Bl _sE £ rha 1py2
3528 T3k, T 3. T Hatls — 3H 00p) (10.70)

where 7 is given by eqn (10.62). (Note D, can be replaced by D, in this
case.) Consider for example that a constant magnetic field parallel to the
z axis is switched on at t =0, i.e.,

t<0,

H(t)= [H >0, (10.71)
Equation (10.70) gives
3 4Dy,
Szz(t) = - S,,( )+ 9kBTH (10.72)
which is solved by
Szz(t) = (1 — exp(—t/ t))szz(oo) (10' 73)
with
2 H 10.74
Sl = G wh (1979

Thus not only the relaxation time 7 but also the steady-state value S,,(«)
diverge as v approaches v*. The magnetic birefringence in rodlike
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polymers has been studied by Nakamura and Okano,?® and the results of
egns (10.62) and (10.74) have been confirmed.

10.4.3 Viscoelasticity

The pretransitional effect can be also observed by viscoelasticity. Firstly
we derive the constitutive equation from the kinetic equation. Again, eqn
(10.39) in the presence of the velocity gradient K'is rewritten to give a
kinetic equation for S,s (see eqn (8.149)):

2]
gt qu = Faﬁ[S] + Gap[s:l (10‘75)

where
Gaﬁ = %(Ka'ﬂ + Kpa) + Ka“s“ﬂ + KBI‘SI‘G' - §6aﬁkuvsuv - ZK“VS“VSaﬁ.

(10.76)
The stress tensor is calculated from the change of the free energy
equation (10.23) under a virtual deformation. By the same calculation

described in Section 8.6.1, we have (see eqn (8.114))

Onp = 3VkpTSap — v{(t X RU,)alip)

=3vkpT[Sap — U(Sau{uutg) — S, {u,u,uug))]  (10.77)

which is rewritten by the decoupling approximation (10.47) as

Uaﬁ = 3kaT[Saﬂ(l - 3 - U(Sa“S“p - 56,,55,2",) + USaﬂSwSW].

(10.78)

Equations (10.75) and (10.78) determine the stress for a given velocity
gradient and can be regarded as a constitutive equation. It should be
emphasized that this constitutive equation holds in both the isotropic and
the nematic phases since no presumption has been required about the
equilibrium state.

Let us now consider the linear viscoelasticity of the isotropic phase.
Since §,4 is small in this regime, eqn (10.75) can be written as

%) 1
5{ op = —;Saﬁ + %(Ka'ﬂ + Kﬂa’) (10.79)

which gives

Sup®) =3 [ 41 exp(—(t = ()TN (Rap (1) + Kpolt)).  (10.80)
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Hence to the first order in K,g,

Oup(t) = 3kaT(1 —2)8us(0)

3
= f dt'G(t — 1) (Kap (') + Kpa(t')) (10.81)
where -
G(t) = G, exp(~t/7) (10.82)
and
G.= kaT(l - %’) . (10.83)

Note that the instantaneous modulus G, becomes small near the
transition point due to the pretransitional effect. The viscosity 7, and the
steady-state compliance are calculated as

1

No = jdt G(t) = 'VkBT(l - %I)f =';,‘kBTE ’ (10.84)

1 ~ M
~(1-(p/p*)pRT’
(1 -%})kaT

The steady-state compliance has a minimum at p=p*/2 and then
increases again by the pretransitional effect. This has indeed been
observed by Berry and coworkers.?’ On the other hand the viscosity is
unaffected by the pretransitional effect. (This is a result of the cancella-
tion of the effect on the relaxation time 7 and on the rigidity modulus
G..) Experimental results on the viscoelasticity of the isotropic solution
have been reviewed by Baird.*

JO = iz I Gt = (10.85)
0%

10.5 Linear viscosity in the nematic phase

10.5.1 Introduction

We shall now study the flow properties of the nematic phase. From the
microscopic viewpoint, no special consideration may seem necessary
since the constitutive equation (10.75) and eqn (10.78) applies both for
the isotropic and the nematic states. This is not the case. The rheological
properties of solutions of rodlike polymers are changed entirely when the
system becomes nematic.

Figure 10.5 shows the viscosity as a function of concentration. In the
isotropic phase, the viscosity increases with increasing concentration (in
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Fig. 10.5. Concentration-dependence of the viscosity at 20°C for solutions of

poly(para-benzamide) of various molecular weights in N,N-dimethylacetamide/

LiCl; (3) 10900; (O) 16 000; (A) 23 800: ( X ) 69 000 (adapted from ref. 23). This
figure is reproduced from ref. 22.

agreement with the prediction of the previous chapter), whilst it decreases

in the nematic phase.
A more fundamental difference is observed in the normal stress

difference in steady shear flow:

x _{x ife=xand =y,
“*710 otherwise.
In the isotropic phase, the first normal stress difference N, = o,, — 0, is

proportional to x? for small x, whereas it is proportional to |k| in the
nematic phase? and written as

(10.86)

O — Oy, =1n |K| for x—0. (10.87)
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This indicates that the stress is not an analytic function of the shear rate
at x =0.

For low-molecular-weight nematics, it has been known that the
constitutive equation of nematics is entirely different from that for
isotropic liquids.'? A phenomenological theory for the hydrodynamics of
nematics (of low molecular weight) has been constructed by Ericksen®
and Leslie.” Their equation reads

0= a,(nn:Ann + a,;nN + a;Nn + o, A+ asnn- A+ acA-nn  (10.88)

and
nX((h—(a3;—a))N—(ag—as)A+n)=0 (10.89)
where
A=i(k+k*), N-= %‘; —3(k—K*)-n, (10.90)

and n X A is the torque per unit volume caused by the external magnetic
field or the spatial inhomogeneity of the director. The coefficients
@, ..., @ are called the Leslie coefficients. A physical argument for
deriving these equations is given in refs 1 and 2.

The Ericksen—Leslie theory will hold for the polymeric nematics if the
velocity gradient is small. Indeed the singular behaviour in the first
normal stress difference is predicted by this theory.'?

In this section we shall show how such constitutive equations can be
derived from the molecular theory given in the previous section. For the
sake of simplicity, we first consider the case that the system is
homogeneous and there is no magnetic field (so that A=0 in the
Ericksen-Leslie theory).

The reason for the peculiar constitutive equation for nematics is easily
found. Consider that the velocity gradient is both weak and independent
of time. The order parameter of the steady state is given by

F,4[S]+ G.5[S]=0. (10.91)
Suppose we look for the solution in the form
Soap = Soap + S1ap (10.92)

where S5, is the equilibrium order parameter, and S,,; denotes the
correction to first order in XK. As shown in Section 10.3.2, Ssap is written

as
Soap = S(nang —164p) (10.93)
with
1 3 8v*\12
S“Z*Z(l' 9v) . (10.94)

(Here S, is written as S for notational simplicity.) The peculiar feature of
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the nematic phase is that the unperturbed state Sy,z is not known because
n is arbitrary in equilibrium. Therefore the standard perturbation method
which has been used for the isotropic state fails in the nematic. This gives
the constitutive equation characteristic to the nematic phase.*?’

10.5.2 Perturbation scheme

Our problem is to find a perturbation method which determines the
unperturbed state specified by n, uniquely. To see the formal aspect
clearly, let us consider the problem in terms of the original kinetic
equation. The equation to be solved is

F[¥] + G[¥] =0 (10.95)
where

Fl¥]=D,% - [atp - au,d[tp]] (10.96)

and

G[¥]=D,R - (—sw) —R-uxK-u¥).  (10.97)

We assume that the solution of eqn (10.95) has the following form,
Y= +W +... (10.98)

where ¥, is the solution in the equilibrium state, which includes the
director n to be determined, and W, is the first-order perturbation in G.

Substituting eqn (10.98) into (10.95) and comparing the first order in
G, we get

H[¥,] + G[¥,] =0 (10.99)
where H[W] is a linear operator obtained from the expansion of F[¥]:

Note that since ¥, includes the director n, the operator H depends on n.
Let v® and ¢® be the right- and left-handed eigenfunction of the
operator H:

H[tp“)] o = 1«)1,,(0, H+[¢(°] = o 3_(04,(0. (10. 101)
(H™ being the adjoint operator of H.) They will be orthonormal:

= f dugpOy?. (10.102)

We look for the solution of eqn (10.99) in the form
¥, = ay®, (10.103)
i



370 CONCENTRATED SOLUTIONS

Substituting eqn (10.103) into eqn (10.99), we get
Z APap® = G[¥,) (10.104)

or using eqn (10.102),
A0g, = f du¢OG[W,]. (10.105)

Now a crucial point is that another condition is needed for this
equation to have a solution, because some of the eigenvalues of the
operator H are zero. This is a consequence of the fact that the
equilibrium state in nematics is continuously degenerate. If fact, if ¥,
and W, denote the equilibrium states having directors n and »’ = n + n,
respectively, then 6%¥,=W;— W, corresponds to an eigenfunction of
zero eigenvalue, since

Thus to obtain the steady-state solution, we must have
f dugp®G[W,] =0 (10.107)

for the eigenfunction ¢ which corresponds to zero eigenvalue. This
equation determines the director n in the unperturbed state.

10.5.3 Approximate calculation

Let us now go back to the approximate kinetic equation and carry out the
above procedure. If we substitute eqn (10.92) into egn (10.91) and
compare the first-order in x, we get

Ha'ﬂ.pvslpv + Gaﬁ [&)] =0. (10‘ 108)
The matrix H,g ,,, which corresponds to the operator H[¥], is given by

Hoppw = —61‘),{[(1 - ;—}) +3US + §US2]6W6,3.,

—US(8gunan, + Saynpn,) +2US*(nyng — 380p)(nun, — §6W)}.

(10.109)

The eigenvector ¢4}, which corresponds to the eigenfunction ¢“(u) of
zero eigenvalue now satisfies

H,, «p¢ffl = (. (10.110)
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The solution of eqn (10.110) is given by
¢ =n.mg +ngm? (10.111)

where m® is an arbitrary vector perpendicular to n. The condition
(10.107) is now written as

G .p[S0] = 0. (10.112)

By use of eqns (10.76) and (10.111), this equation is rewritten, after some
calculation, as

[(1 = S)kpang + (1 +28)k,pnglm$ = 0. (10.113)
Since m® is perpendicular to m, this condition is rewritten as
(1= S)K* -n+(1+2S)k-n]Xn=0 (10.114)

which determines n.
Given n, it is straightforward to calculate the stress. Equation (10.78)
can be rewritten using eqn (10.75) as

vk T o
Oup = 25 [ ey S«ﬂ +3(Kop + Kpa) + KaSyp

+ KpuSua — 500pKuy — 2Ky Suy Sap- (10.115)

In the steady state 3S,5/0¢ =0, so that

vkgT
T = 25
- 36apKwS“v - ZK“,,S,WS“,;]. (10. 1 16)

[%(Ka'ﬁ + Kﬂa) + Ka“S“p + Kp“S,m

In- the calculation of the first-order perturbation in &, S,z on the
right-hand side can be replaced by the equilibrium value:

Sep = S(nang = 38,p). (10.117)
Substituting eqn (10.117) into eqn (10.116) we finally have

kgT[1—
=8 [ J (Kaﬂ Kﬂa) + S(Kaunﬁnu + Kpuhahy)

%¢=2p, | 3
—ZSzx“vn“n,,nanp] (10.118)

If n is known from eqn (10.114), eqn (10.118) gives the stress in the
steady state. It can be easily checked that eqns (10.114) and (10.118)

agree with the Ericksen—Leslie equations (10.88) and (10.89) in the case
of A =0 and dn/dt =0.
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10.5.4 Example—shear flow

As an example, consider the shear flow (10.86). From the symmetry of
the flow, n is in the x—y plane, and can be written as

n, = cos X, n,=siny, and n,=0. (10.119)
Substituting eqn (10.119) into eqn (10.114) we have
(1 — )k cos’y — (1 +28)k sin’y =0, (10.120)
i.e.,
1-—- S 172
tanx—[1+2s] : (10.121)

Since 0 < § <1, x is smaller than 45.
The viscosity 7 is defined by

n = 0,/K. (10.122)
This is calculated from eqn (10.118) as
_'VkBT(l"‘S 2 _ 222)
=3b 3 + Snj, — 28°nzn; (10.123)
_ vkgT(1-8)*(1+28)(1+ 3S/2)
6D, 1+ S/2) (10.124)

Using eqns (10.53), (10.93), and D, = v~2, we have
y(teD
D,= D"“’( ) (1—- 8% (10.125)

where v? is a certain reference concentration in the isotropic state. We
choose v™? to be v*. The rotational diffusion constant at v* is given by
(see eqn (9.16)).

= BD,o(v*L*) 2 (10.126)
Then

- v* 2
b, = D:‘(T) (1822 (10.127)

From eqns (10.124) and (10.127),

n_ (l)3 (1-8)*1+8)*(1+28)(1+35/2)
n* \v* (1+8/2)? (10.128)
where
*_v*kBT,_.‘ *73)\3 _ .E ’
n =Y =Ly =n(p) (10.129)
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Fig. 10.6. The steady-state viscosity for the shear stress 7 and that for the normal
stress 1y of the solution of rodlike polymers is plotted against concentration. In
the isotropic phase, 77, vanishes identically.

Equations (10.94) and (10.128) give the concentration dependence of 7.
(Note that eqn (10.128) holds also in the isotropic solution if § is put to
zero.) The result, shown in Fig. 10.6, indicates that the viscosity takes a
maximum near the phase transition point, in agreement with the
experimental results.

The viscosity 7, for the normal stress is calculated similarly:

NN _ ( v )3 S(1 - 8)"*(1+ 8)*(1 +25)'?
n* (1+5/2) ‘

This vanishes in the isotropic phase ($ =0), but does not vanish in the
nematic phase (S > 0).

(10.130)

V*
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10.5.5 The Leslie coefficients

We have seen that the constitutive equation given by eqns (10.75) and
(10.78) agrees with the special case of the Ericksen—Leslie theory.
Therefore, by comparing the two equations, it is possible to express the
Leslie coefficients by molecular parameters.”*?”’ To carry out this
programme, however, we have to consider the situation with both
magnetic and velocity gradient fields. If we repeat the same calculation as

in Section 10.5.3, we have the following equation instead of eqn
(10.114):*

((1—3):: n+(1+25)K-n+ "‘“(2+S)(H n)H)Xn 0. (10.131)

Also the stress tensor is obtained as

Oap = vsz{,T [1 ; (Kap + Kpa) + S(Kaungn, + Kpgunan,)

—2S2x,,vn,,nvnanp] + % XoHun,(Hyng — Hgn,).  (10.132)

Comparing eqns (10.88) and (10.89) with eqns (10.131) and (10.132), we
havet?

3S 3S
— _~Q2: - ad —_qf1_22
@0 =-257, = S(l T2 s) * s(l o s)
a,=%(1—8)7, as=287, and ag=0, (10.133)
where T
. _VKp

Experimentally it is not easy to measure all of the Leslie coefficients.
What is often measured is the Miesovicz viscosity defined by

Na=30s Mm=3az+a,+as), N.=3(—a+a,+as). (10.135)
These are calculated from eqn (10.133) as

=3(1-95)a, (10.136)
2(1- 3)2
My = 32+ S) (10.137)
228 +1)*
Ne= m (10.138)

t That @, is proportional to . S? for small S is a general result that can be derived from the
Landau-de Gennes theory.* On the other hand, that @, vanishes is an accidental result of
the decoupling approximation, and is not generally true.
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Fig. 10.7. The Miesovicz viscosities 7,, 1,, 7. plotted as functions of S.

These are plotted as a function of § in Fig. 10.7. The relative magnitude
of n,, 1, and 7. are in qualitative agreement with experimental
results®~? (see also the reviews~* for low-molecular-weight nematics).

According to the Ericksen-Leslie theory, steady shear flow is possible
only when A= (a,+ a3)/(a;— @) is larger than unity."? The result
(10.133) satisfies this condition for all values of S. On the other hand,
more accurate analysis of the original kinetic eqn (10.39) without using
the decoupling approximation indicates?®? that A becomes less than unity
in the highly ordered state. Though this result is disturbing, its relevance
to experiment still remains to be seen since the value of A is close to unity
and sensitive to various effects which are not included in the theory.
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10.6 Future problems

Here we shall briefly discuss topics which have not been covered in the
previous sections.

10.6.1 Nonlinear viscoelasticity in nematics

The Ericksen—Leslie theory takes into account only the first-order effect
of the velocity gradient. If the magnitude of the velocity gradient
becomes larger, the theory fails. Indeed it has been observed that the
steady state viscosity decreases with the shear rate (shear thinning).?~
Such nonlinear phenomena can be theoretically studied by the constitu-
tive equation (given by eqns (10.75) and (10.78)), according to which the
characteristic shear rate k., for the shear thinning is estimated by

L34 9(v 8 3(/v v 8"
=6D,|- (L-2)+2(Z(Z-2)) | @03
S5 07 (55)+3 (= (5o=5) | o139

K, = 6D’ﬁ
Note that this increases with concentration: the nonlinear effect is
expected to be less pronounced at higher concentration.

The result of more detailed calculation® is shown in Fig. 10.8, where
the steady-state viscosity at various shear rates is plotted against
concentration. The characteristic feature is that as the shear rate
increases the maximum of the viscosity decreases. This agrees at least
qualitatively with experiments®” (see Fig. 10.9).

On the other hand, curious nonlinear effects have been observed in
some polymeric nematics. Kiss and Porter’® found that with increasing
shear rate, the first normal stress difference becomes negative and then
becomes positive again. This effect is not explained by the present
constitutive equation and some other physical reason appears to be
needed.

10.6.2 Spatial inhomogeneity and domain structure

In the theory described so far, it has been assumed that the system is
homogeneous, i.e., the velocity gradient and the director are independ-
ent of position. If the director n varies with position, there will be an
elastic energy which tends to minimize the spatial gradient of the
director. This effect is analysed in detail in the classical theory of
low-molecular-weight nematics,**? according to which the elastic energy
is written as'?

Ay =3K,(div r)* + 2K (n - curl n)® + 3K3(n X curl n)%  (10.140)

The constants K;, K, and K; have been calculated by a straightforward
generalization of Onsager’s theory.*>* The result indicates that near the
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Fig. 10.8. Concentration-dependence of the steady-state viscosity at various shear
rates.
transition point
kgT
Ki=K,=K;y= % . (10.141)

Though the elastic energy equation (10.140) is important in many
nonlinear flow properties of low-molecular-weight nematics, its effect is
less important in polymeric nematics since the stress is usually dominated
by the viscosity in polymeric nematics.

Polymeric nematics often take up a certain domain structure at
equilibrium.*** Various patterns have been observed by polarization
microscopy. Curiously enough, such structures seem to correspond to the
minimum of free energy since even after the system is brought to a
homogeneous state by shearing, the domain structure is spontaneously
recovered when the flow is stopped.*” The formation and destruction of
the domain structure are quite important in the macroscopic flow
properties, and indeed dominate the phenomena at low stress level. At
present, however, the physical origin of the domain structure is not
known and the flow properties at low stress levels are poorly
understood.*®
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Fig. 10.9. The steady-state viscosity of poly-y-benzyl-giutamate (molecular
weight 350 000) at various shear rates is plotted against concentration. The shear
rate (in sec™ ') is indicated by the number in the figure. Reproduced from ref. 38.

10.6.3 Thermotropic liquid crystals

Much of the current research on polymeric liquid crystals is directed
towards thermotropic liquid crystals*> which are formed when certain
polymer melts are cooled. Many of those polymers includes chemical
groups similar to low-molecular-weight nematics either along the main
chain or in the side chains. These materials are technologically interesting
because of their ease of processing. Theoretically, these materials are
expected to show curious behaviours which are a mixture of their
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polymeric and nematic character. Except for a few attempts,* the
problem is mostly unexplored.
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on coil radius 27-35

on concentration fluctuations 148-66

scaling theory, see scaling laws

screening of 149--52
excluded volume parameter 25-7, 28-9

Fick’s law 47, 49-51
Finger strain 242
flexibility of polymers 316-17
Flory temperature, see theta temperature
Flory-Fox parameter 114, 119
fluctuation dissipation thcorem 58-62
fiux velocity 49, 50
Fokker Planck equation, see Smoluchowski
equation
form birefringence
molecular expression 125-7
in shear flow 128-9, 166-9
freely jointed chain 8-9, 11-13
freely rotating chain 9

Gaussian approximation 146-52
Gaussian chains
conformational distribution 14-16, 17-21
scaling properties 32-3
Gaussian distributions
complex variables 38-9
many variables 36-8
single variable 35-9
generalized coordinates 77-9
generalized diffusion equation, see
Smoluchowski equation
good solvents 140
Green functions
and time correlation functions 56-7
for chain statistics 17-21, 40-1
for Smoluchowski equation 56-7, 85
growth function 60

harmonic spring model 62-5
homogencous flow 70-1
Huggins coefficient 141, 179
hydrodynamic interaction
between beads 66
in Zimm model 97-103
screening of 173-4, 180

independent alignment (JA)
approximation 262-4

inextensible primitive chain 260
intrinsic birefringence

molecular expression 1224

in shear flow 127-8

relation to stress tensor 221-2
intrinsic viscosity

definition 109

of flexible polymers 112-14

of rodlike polymers 311

variational bounds for 116-19

Kerr constant 306, 344

Kirkwood theory for viscoelasticity
kinetic equation 71-2, 76-80
stress formula 72-6, 80-2
variational formulation 82-3

Kratky-Porod model 317

Kuhn statistical length 11

Landau-de Gennes theory 358, 359-60
Langevin equation
general form 52-5
relation to Smoluchowski equation 55,
85-7
Leslie coefficients 368, 374-5
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linear viscoelasticity
constitutive equation 222-5
of flexible polymers
concentrated solutions 225-30, 234-9,
278-3
dilute solutions 108-16
of rodlike polymers
concentrated solutions 365-6
dilute solutions 307-12
semidilute solutions 337-9
linearization approximation 100
hquid crystals 350-1, see also nematic
phase
Lodge—Meissner relation 253
long range interaction 24
loss modulus, see complex modulus

mean field potential

for excluded volume chain 31

for nematics 355, 358
Miesovicz viscosity 3745
mobility

general definition 50

of a sphere 48

of point particles 66

of rigid bodies 66n

nematic phase
constitutive equation 368, 374
symmetry of 350-1
theory for phase transition 351-8, 360-2
nonlinear viscoelasticity
characteristic phenomena
flexible polymers 255-8
rodlike polymers 339-40
theoretical results
for flexible polymers 260-6, 274-8
for nematics 365, 368
for rodlike polymers 340
normal stresses
in flexible polymer solutions 240, 256,
267

in nematic phase 367-8, 373, 376
in rodlike polymer solutions 340

order parameter of nematics 351
Oseen tensor 68, 88~9

osmotic pressure 148, 153-4
overlap concentration 141

pair correlation function 147
persistent length 316-18
plateau modulus 230, 235

poor solvents 140
polarizability tensor 135-7
pretransitional phenomena 362-6
primitive chain
contour length 192-3, 206
dynamics, see reptation model
entropy of 205
step length 193
primitive chain segments 196
primitive paths 188, 192
principle of locality 70

radius of gyration
definition 22
relation to end-to-end vector 23, 34
relation to hydrodynamic properties 100,
103
in semidilute solution 154
random flight models 8-14
random forces 52, 55
refractive index tensor 121
relaxation function 59
renormalization group theory 31
reptation model
basic equations
in equilibrium 197-205
under shear 274-6
conformation of polymers, see primitive
chain
constraints by tubes, see tube models
deformation by strain 245-7, 261-3
fluctuations within the tube 205-13
parameters of 192-3, 2304
theoretical results
diffusion constant 200
dynamic structure factor 202-5
relaxation times 196, 211
segmental motion 198-202
viscoelasticity, see linear viscoelasticity
and nonlinear viscoelasticity
reptation time 196, 211
response functions 58
rigid constraints 76—80
rigid rod model
basic equations 290-7, 318-21
theoretical results
dielectric relaxation 304-6
diffusion constant 297, 300
dynamic structure factor 300-3
electric birefringence 3067
relaxation times 299
viscoelasticity 307-16
rotational motion of rodlike polymers
equation of orientational tensor
dilute solutions 313
concentrated solutions 359, 364, 365
Smoluchowski equation 294-5
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rotational motion of rodlike polymers
(cont.)
rotational diffusion constant
definition 290-1
dilute solutions 298
experimental results 335-6
semidilute solutions 327-30, 331-2
rotational friction constant 291-3
rotational operator 293
rotational relaxation times
of flexible polymers 96
of rodlike polymers 299, 331, 363
Rouse model
basic equations 91-6
normal coordinates of 94-5
theoretical results
diffusion constant 95
dynamic structure factor 132-5
relaxation times 96
viscoelasticity in melt 225-6, 241-3,
259-60
validity of the model 93-4, 218-19

scaling laws
dynamical, see dynamical scaling laws
for dilute solutions 32-5
for semidilute solutions 152-5
scattering intensity 21
scattering vector 21
screening
of hydrodynamic interaction 173
of excluded volume interaction 151
second virial coefficient 141, 154
segmental motion
of Rouse-Zimm model 132-5
of reptation model 198-202, 211-13
self diffusion constants
defimition 95
experimental results 170-1, 219, 2344
Kirkwood formula 106, 120
of flexible polymers
dilute solutions 100, 102-3
entangled regime 200, 215
Rouse regime 95
of rodlike polymers
dilute solutions 297, 299-300
semidilute solutions 327, 331
variational bounds 119-21
semidilute solutions, see classification of
solutions
shear deformation
flow alignment of rodlike polymers 314—
16, 372-3
kinematics 240, 255, 259
stresses in 240, 255-6
shear rate 108, 259

shear relaxation modulus
definition 108, 222-5
of fiexible polymers
entangled regime 226-8
Rouse regime 226-8
of rodlike polymers
concentrated solutions 366
dilute solutions 312
semidilute solutions 338-9
shear strain 240
shish-kebab model, see rigid rod model
short range interaction 24
Smoluchowski equation
general form 46-51
irreversibilty 52-3
relation to Langevin equation 54-5
star polymers
diffusion of 213-15, 278
viscoelasticity of 278-81
steady state compliance
definition 225
experimental results 230-1
theoretical results
reptation model 230, 280-1
rodlike polymers 366
Rouse model 226, 260
steady state viscosity, see viscosity of
solutions
Stokes approximation 67
storage modulus, see complex modulus
stress optical coefficient 127, 221-2
stress optical law 221-2
stress overshoot 257, 268, 270
stress relaxation
after double step strains 270—-4
after large step strains
comparison with experiments 249-55
theoretical results 241-3, 243-9
after small step strains, see shear relaxa-
tion modulus
stress tensor
definition 73
isotropic part for incompressible fluids
71
molecular expressions
flexible polymers 110-12, 220-1
general formula 72-5
reptation model 243-4, 262-3
rodlike polymers (isotropic phase) 307,
336-7, 338
rodlike polymers (nematic phase) 365
structure factors
dynamical, see dynamic structure factor
of concentrated solutions 147-8
of excluded volume chains 34-5
of Gaussian chains 22-3
of semidilute solutions 152-3
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thermotropic liquid crystals 378
theta temperature 26, 143
time correlation functions
definition 55-8
examples, see Brownian motion
initial decay rate 57-8
relation to response functions 58-62
topological interactions, see entanglements
translational diffusion, see self diffusion
constant
tube model of flexible polymers
conformation of polymers, see primitive
chain
constraint release 238, 281, 282
dynamics, see reptation model
in rubber 188-9
tube deformation 238-9
tube diameter 188-206, 230-4
tube reorganization 238, 281, 282
tube model of rodlike polymers
basic equations 326-36
constraint release 328
fluctuations within the tube 340-5
theoretical results
diffusion constants 331
relaxation times 331
viscoelasticity 336-40
tube diameter 328-30
tube dilation 334-5, 345-6, 360
tube segments 194, 196
two parameter model 27

variational principles
in Brownian dynamics 82-3
bounds for diffusion constant 119-21
bounds for intrinsic viscosity 116-19

velocity gradient tensor 70, 258
Verdier—-Stockamyer model 129-31
virtual work 75-6, 81-2
viscoelasticity, see linear or nonlinear
viscoelasticity
viscosity number, See intrinsic viscosity
viscosity of solutions
flexible polymers
dilute solutions, 112-14, 116-19
concentration dependence 235-6
molecular weight dependence 237-8
non-Newtonian 256, 267
prediction of reptation model 229-30
prediction of Rouse model 226
rodlike polymers
dilute solutions 311, 318
nematic phases 367-9, 372-3, 376
semidilute solutions, 367, 372-7
viscous stress
definition 81-2
in flexible polymers 221
in rodlike polymers 308-10, 337-8

Wick’s theorem 37
Wiener distribution 16

z expansion 28, 41-3
Zimm model
basic equations 97-8
preaveraging approximation 97
theoretical results
diffusion constant 100, 103
dynamic structure factor 104-8, 135
relaxation times 100, 103
viscoelasticity 114-16
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